Different organisms, cell types, and even similar cell lines can dramatically differ in resistance to genotoxic stress. This testifies to the wide opportunities for genetic and epigenetic regulation of stress resistance. These opportunities could be used to increase the effectiveness of cancer therapy, develop new varieties of plants and animals, and search for new pharmacological targets to enhance human radioresistance, which can be used for manned deep space expeditions. Based on the comparison of transcriptomic studies in cancer cells, in this review, we propose that there is a high diversity of genetic mechanisms of development of genotoxic stress resistance. This review focused on possibilities and limitations of the regulation of the resistance of normal cells and whole organisms to genotoxic and oxidative stress by the overexpressing of stress-response genes. Moreover, the existing experimental data on the effect of such overexpression on the resistance of cells and organisms to various genotoxic agents has been analyzed and systematized. We suggest that the recent advances in the development of multiplex and highly customizable gene overexpression technology that utilizes the mutant Cas9 protein and the abundance of available data on gene functions and their signal networks open new opportunities for research in this field.
Tracheal grafts introduce the possibility to treat airway pathologies that require resection. While there has been success with engraftment of the surface airway epithelium (SAE) onto decellularized tracheas, there has been minimal advancement in regenerating the submucosal glands (SMGs). We designed a cost-effective open-system perfusion bioreactor to investigate the engraftment potential of ferret SAEs and murine myoepithelial cells (MECs) on a partly decellularized ferret trachea with the goal of creating a fully functional tracheal replacement. An air–liquid interface was also arranged by perfusing humidified air through the lumen of a recellularized conduit to induce differentiation. Our versatile bioreactor design was shown to support the successful partial decellularization and recellularization of ferret tracheas. The decellularized grafts maintained biomechanical integrity and chondrocyte viability, consistent with other publications. The scaffolds supported SAE basal cell engraftment, and early differentiation was observed once an air–liquid interface had been established. Lastly, MEC engraftment was sustained, with evidence of diffuse SMG reconstitution. This model will help shed light on SMG regeneration and basal cell differentiation in vitro for the development of fully functional tracheal grafts before transplantation.
Cartilaginous airways of larger mammals and the mouse trachea contain at least 3 well-established stem cell compartments, including basal cells of the surface airway epithelium (SAE) and ductal and myoepithelial cells of the submucosal glands (SMG). Here we demonstrate that glandular Sox9-expressing progenitors capable of SAE repair decline with age in mice. Notably, Sox9-lineage glandular progenitors produced basal and ciliated cells in the SAE, but failed to produce secretory cells. Lef1 was required for glandular Sox9 lineage contribution to SAE repair, and its deletion significantly reduced proliferation following injury. By contrast, in vivo deletion of Sox9 enhanced proliferation of progenitors in both the SAE and SMG shortly following injury, but these progenitors failed to proliferate in vitro in the absence of Sox9, similar to that previously shown for Lef1 deletion. In cystic fibrosis ferret airways, Sox9 expression inversely correlated with Ki67 proliferative marker expression in SMG and the SAE. Using in vitro and ex vivo models, we demonstrate that Sox9 is extinguished as glandular progenitors exit ducts and proliferate on the airway surface and that Sox9 is required for migration and proper differentiation of SMG, but not surface airway, progenitors. We propose a model whereby Wnt/Lef1 and Sox9 signals differentially regulate the proliferative and migratory behavior of glandular progenitors, respectively.
Background. Long-term survival after lung transplantation remains limited by chronic lung allograft dysfunction (CLAD). CLAD has 2 histologic phenotypes, namely obliterative bronchiolitis (OB) and restrictive alveolar fibroelastosis (AFE), which have distinct clinical presentations, pathologies, and outcomes. Understanding of OB versus AFE pathogenesis would improve with better animal models. Methods. We utilized a ferret orthotopic single-lung transplantation model to characterize allograft fibrosis as a histologic measure of CLAD. Native lobes and “No CLAD” allografts lacking aberrant histology were used as controls. We used morphometric analysis to evaluate the size and abundance of B-cell aggregates and tertiary lymphoid organs (TLOs) and their cell composition. Quantitative RNA expression of 47 target genes was performed simultaneously using a custom QuantiGene Plex Assay. Results. Ferret lung allografts develop the full spectrum of human CLAD histology including OB and AFE subtypes. While both OB and AFE allografts developed TLOs, TLO size and number were greater with AFE histology. More activated germinal center cells marked by B-cell lymphoma 6 Transcription Repressor, (B-cell lymphoma 6) expression and fewer cells expressing forkhead box P3 correlated with AFE, congruent with greater diffuse immunoglobulin, plasma cell abundance, and complement 4d staining. Furthermore, forkhead box P3 RNA induction was significant in OB allografts specifically. RNA expression changes were seen in native lobes of animals with AFE but not OB when compared with No CLAD native lobes. Conclusions. The orthotopic ferret single-lung transplant model provides unique opportunities to better understand factors that dispose allografts to OB versus AFE. This will help develop potential immunomodulatory therapies and antifibrotic approaches for lung transplant patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.