In this paper, we present a shared task on core information extraction problems, named entity recognition and relation extraction. In contrast to popular shared tasks on related problems, we try to move away from strictly academic rigor and rather model a business case. As a source for textual data we choose the corpus of Russian strategic documents, which we annotated according to our own annotation scheme. To speed up the annotation process, we exploit various active learning techniques. In total we ended up with more than two hundred annotated documents. Thus we managed to create a high-quality data set in short time. The shared task consisted of three tracks, devoted to 1) named entity recognition, 2) relation extraction and 3) joint named entity recognition and relation extraction. We provided with the annotated texts as well as a set of unannotated texts, which could of been used in any way to improve solutions. In the paper we overview and compare solutions, submitted by the shared task participants. We release both raw and annotated corpora along with annotation guidelines, evaluation scripts and results at https://github.com/dialogue-evaluation/RuREBus.
We show-case an application of information extraction methods, such as named entity recognition (NER) and relation extraction (RE) to a novel corpus, consisting of documents, issued by a state agency. The main challenges of this corpus are: 1) the annotation scheme differs greatly from the one used for the general domain corpora, and 2) the documents are written in a language other than English. Unlike expectations, the state-of-the-art transformer-based models show modest performance for both tasks, either when approached sequentially, or in an end-to-end fashion. Our experiments have demonstrated that fine-tuning on a large unlabeled corpora does not automatically yield significant improvement and thus we may conclude that more sophisticated strategies of leveraging unlabelled texts are demanded. In this paper, we describe the whole developed pipeline, starting from text annotation, baseline development, and designing a shared task in hopes of improving the baseline. Eventually, we realize that the current NER and RE technologies are far from being mature and do not overcome so far challenges like ours.
In this paper we present a corpus of Russian strategic planning documents, RuREBus. This project is grounded both from language technology and e-government perspectives. Not only new language sources and tools are being developed, but also their applications to egoverment research. We demonstrate the pipeline for creating a text corpus from scratch. First, the annotation schema is designed. Next texts are marked up using human-in-the-loop strategy, so that preliminary annotations are derived from a machine learning model and are manually corrected. The amount of annotated texts is large enough to showcase what insights can be gained from RuREBus.
We show-case an application of information extraction methods, such as named entity recognition (NER) and relation extraction (RE) to a novel corpus, consisting of documents, issued by a state agency. The main challenges of this corpus are: 1) the annotation scheme differs greatly from the one used for the general domain corpora, and 2) the documents are written in a language other than English. Unlike expectations, the state-of-the-art transformer-based models show modest performance for both tasks, either when approached sequentially, or in an end-to-end fashion. Our experiments have demonstrated that fine-tuning on a large unlabeled corpora does not automatically yield significant improvement and thus we may conclude that more sophisticated strategies of leveraging unlabelled texts are demanded. In this paper, we describe the whole developed pipeline, starting from text annotation, baseline development, and designing a shared task in hopes of improving the baseline. Eventually, we realize that the current NER and RE technologies are far from being mature and do not overcome so far challenges like ours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.