Recently, the first known light-driven sodium pumps, from the microbial rhodopsin family, were discovered. We have solved the structure of one of them, Krokinobacter eikastus rhodopsin 2 (KR2), in the monomeric blue state and in two pentameric red states, at resolutions of 1.45 Å and 2.2 and 2.8 Å, respectively. The structures reveal the ion-translocation pathway and show that the sodium ion is bound outside the protein at the oligomerization interface, that the ion-release cavity is capped by a unique N-terminal α-helix and that the ion-uptake cavity is unexpectedly large and open to the surface. Obstruction of the cavity with the mutation G263F imparts KR2 with the ability to pump potassium. These results pave the way for the understanding and rational design of cation pumps with new specific properties valuable for optogenetics.
The light-gated ion channel channelrhodopsin 2 (ChR2) from is a major optogenetic tool. Photon absorption starts a well-characterized photocycle, but the structural basis for the regulation of channel opening remains unclear. We present high-resolution structures of ChR2 and the C128T mutant, which has a markedly increased open-state lifetime. The structure reveals two cavities on the intracellular side and two cavities on the extracellular side. They are connected by extended hydrogen-bonding networks involving water molecules and side-chain residues. Central is the retinal Schiff base that controls and synchronizes three gates that separate the cavities. Separate from this network is the DC gate that comprises a water-mediated bond between C128 and D156 and interacts directly with the retinal Schiff base. Comparison with the C128T structure reveals a direct connection of the DC gate to the central gate and suggests how the gating mechanism is affected by subtle tuning of the Schiff base's interactions.
One of the major and essential classes of transmembrane (TM) receptors, present in all domains of life, is sensor histidine kinases, parts of two-component signaling systems (TCSs). The structural mechanisms of TM signaling by these sensors are poorly understood. We present crystal structures of the periplasmic sensor domain, the TM domain, and the cytoplasmic HAMP domain of the nitrate/nitrite sensor histidine kinase NarQ in the ligand-bound and mutated ligand-free states. The structures reveal that the ligand binding induces rearrangements and pistonlike shifts of TM helices. The HAMP domain protomers undergo leverlike motions and convert these pistonlike motions into helical rotations. Our findings provide the structural framework for complete understanding of TM TCS signaling and for development of antimicrobial treatments targeting TCSs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.