The homeland security nuclear/radiological threat, accentuates the need for a Spectroscopy Personal Radiation Detector (SPRD). The CsI(Tl) capacity to discriminate the energy-lines of a gamma-radiation source along side with robust nature, makes these detectors suitable for isotope identification under harsh environmental conditions. However the CsI(Tl) detectors are also known for the temperature dependence of their response presenting itself in varying pulse time constant and crystal light yield. When observing a detection system as a whole this dependence appears as spectrum gain shift. For a radioisotope identification device it is paramount to correctly evaluate and compensate for any variation in spectrum parameters that may result in a faulty identification result.This work presents a theoretical analysis along side its practical application aiming at handling temperature transients.Step by step method for constructing a comprehensive scintillation detector temperature gain compensation schema will be presented and an application example will be demonstrated. Experimental lab work combined with digital signal processing techniques, including system identification and digital filtering methods are being used throughout this work and implemented for the solution of the real life problem of scintillation detector temperature gain compensation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.