The aim of this work is to assess the effectiveness of biomass gasification power plants in Russia (Irkutsk region) and compare them with other types of electricity and heat cogeneration systems. Biomass, which is waste from logging and wood processing, is considered as fuel for gasification plants. As a criterion, the cost of energy is used. Analytical relations are obtained for the cost of electric energy at a given cost of thermal energy and vice versa, thermal energy at a given cost of electric energy. These relationships are applied to assess the economic efficiency and compare small-power plants (up to 200–500 kW) such as mini-combined heat and power (CHP) on fuel chips and fuel pellets, coal-fired CHP and gas and liquid fuel power plants (gas-piston and diesel power plants). The latter are equipped with heat recovery boilers and supply consumers with heat and the electric power simultaneously. The calculation results show that the cost of electricity when using wood fuel is significantly less than the cost of electricity from a diesel power plant due to the use of cheaper fuel. In this regard, for autonomous energy systems of small power, especially near logging points, energy supply from biomass gasification power plants is a preferable solution than the use of diesel power plants. Wood fired energy cogeneration systems (mini-CHP) can also successfully compete with coal and gas power plants if they have cheap wood fuel at their location. With the introduction of carbon dioxide emissions charges, the use of not only wood chips, but also pellets becomes competitive in comparison with coal and gas.
This paper addresses the assessment of woody biomass resources in Russia and the Baikal region. The analysis of the literature demonstrates that the Baikal region has considerable amounts of waste from the logging, timber processing, and pulp and paper industries (up to 220 PJ). A review of utilization technologies for woody biomass demonstrates that the existing technologies based on biomass gasification are promising for energy purposes. The gasification of biomass for small-capacity power plants has some advantages compared to its combustion. This paper considers an autonomous power system that consists of photovoltaic converters, wind turbines, storage batteries, a biomass gasification power plant, and a diesel power plant. A mathematical model used to optimize the system’s structure finds the minimum of the total discounted costs for the creation and operation of the system with some constraints met. Based on mathematical modeling, the cost-effectiveness of such a power supply system is assessed for different climatic zones of the Baikal region and the coastal area of Lake Baikal. The findings indicate that the optimal solution is the integration of various renewable energy sources in hybrid power systems. The proportion of energy sources of different types in the installed capacities is found. The study demonstrates that the optimal structure of the power system can provide significant savings (the total discounted costs are reduced by almost 2.5 times compared to the option using a diesel power plant alone).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.