Quantum chemical methods AM1 and PM3 and chromatographic methods were used to qualitatively characterize pathways of bacterial production of indole-3-acetic acid (IAA). The standard free energy changes (DG8 H sum ) for the synthesis of tryptophan (Trp) from chorismic acid via anthranilic acid and indole were calculated, as were those for several possible pathways for the synthesis of IAA from Trp, namely via indole-3-acetamide (IAM), indole-3-pyruvic acid (IPyA), and indole-3-acetonitrile (IAN). The DG8 H sum for Trp synthesis from chorismic acid was ± 402 (± 434) kJ´mol ±1 (values in parentheses were calculated by PM3). The DG8 H sum for IAA synthesis from Trp were 2 565 (± 548) kJ´mol ±1 for the IAN pathway, ± 481 (± 506) kJ´mol ±1 for the IAM pathway, and ± 289 (± 306) kJ´mol ±1 for the IPyA pathway. By HPLC analysis, the possibility was assessed that indole, anthranilic acid, and Trp might be utilized as precursors for IAA synthesis by Azospirillum brasilense strain Sp 245. The results indicate that there is a high motive force for Trp synthesis from chorismic acid and for IAA synthesis from Trp, and make it unlikely that anthranilic acid and indole act as the precursors to IAA in a Trp-independent pathway.
A plant-based bioremediation (phytoremediation) strategy has been developed and shown to be effective for the clean-up of soil contaminated by the breakdown products of the chemical warfare agent (CWA), yperite. The method involves exploiting the plant growth hormone, indole-3-acetic acid (IAA), to intensify the phytoremediation. For determination of the yperite breakdown products, gas chromatography is used. Soil and plant samples were analysed with a gas chromatograph fitted with an atomic emission detector. The method of standard-free determination was employed to identify sulphur-containing substances (SCSs). A series of soil tests was conducted, which showed that the level of SCSs decreased 4, 8, and more than 20-fold compared with that found in contaminated soil. This decrease was dependent upon the IAA concentrations used for plant treatment. The treated plants accumulated 2.7 to 2.9-fold larger amounts of the SCSs than did the untreated plants. Owing to its simplicity, environmental safety and inexpensiveness, the method can be recommended for the restoration of soil fertility in areas of storage and destruction of blister CWAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.