Some recent studies mainly addressing the preparation and the modification of nanostructured thin films based on WO(3) and their application to photoelectrolysis of aqueous electrolytes are reviewed with the aim of rationalizing the main factors at the basis of an efficient photoanodic response. WO(3) represents one of the few materials which can achieve efficient water photo-oxidation under visible illumination, stably operating under strongly oxidizing conditions; thus the discussion of the structure-related photoelectrochemical properties of WO(3) thin films and their optimization for achieving almost quantitative photon to electron conversion constitutes the core of this contribution.
[(N,N'-Bis(2-(trimethylammonium)ethylene) perylene 3,4,9,10-tetracarboxylic acid bisimide)(PF6)2] (1) was observed to spontaneously adsorb on nanocrystalline WO3 surfaces via aggregation/hydrophobic forces. Under visible irradiation (λ > 435 nm), the excited state of 1 underwent oxidative quenching by electron injection (kinj > 10(8) s(-1)) to WO3, leaving a strongly positive hole (Eox ≈ 1.7 V vs SCE), which allows to drive demanding photo-oxidation reactions in photoelectrochemical cells (PECs). The casting of IrO2 nanoparticles (NPs), acting as water oxidation catalysts (WOCs) on the sensitized electrodes, led to a 4-fold enhancement in photoanodic current, consistent with hole transfer from oxidized dye to IrO2 occurring on the microsecond time scale. Once the interaction of the sensitizer with suitable WOCs is optimized, 1/WO3 photoanodes may hold potentialities for the straightforward building of molecular level devices for solar fuel production.
The potentiostatic anodization of metallic tungsten has been investigated in different solvent/electrolyte compositions with the aim of improving the water oxidation ability of the tungsten oxide layer. In the NMF/H(2)O/NH(4)F solvent mixture, the anodization leads to highly efficient WO(3) photoanodes, which, combining spectral sensitivity, an electrochemically active surface, and improved charge-transfer kinetics, outperform, under simulated solar illumination, most of the reported nanocrystalline substrates produced by anodization in aqueous electrolytes and by sol-gel methods. The use of such electrodes results in high water electrolysis yields of between 70 and 90% in 1 M H(2)SO(4) under a potential bias of 1 V versus SCE and close to 100% in the presence of methanol.
Anodically grown WO3 photoelectrodes prepared in an N-methylformamide (NMF) electrolyte have been investigated with the aim of exploring the effects induced by anodization time and water concentration in the electrochemical bath on the properties of the resulting photoanodes. An n-type WO3 semiconductor is one of the most promising photoanodes for hydrogen production from water splitting and the electrochemical anodization of tungsten allows very good photoelectrodes, which are characterized by a low charge-transfer resistance and an increased spectral response in the visible region, to be obtained. These photoanodes were investigated by a combination of steady state and transient photoelectrochemical techniques and a correlation between photocurrent produced, morphology, and charge transport has been evaluated
ABSTRACT:The deposition of perylene diimide-based aggregates (PDI) onto wide band gap n-type Sb-doped SnO 2 (ATO) was investigated with the aim of finding efficient and versatile dye-sensitized platforms for photoelectrochemical solar fuel generation. These ATO-PDI photoanodes displayed hydrolytic stability in a wide range of pH (from 1 to 13) and revealed superior performances (up to 1 mA/cm 2 net photocurrent at 1 V vs SCE) compared to both WO 3 -PDI and undoped SnO 2 -PDI when used in a photoelectrochemical setup for HBr splitting. Although ATO, SnO 2 , and WO 3 are endowed with similar conduction band edge energetics, in ATO the presence of a significant density of intrabandgap states, whose occupancy varies with the applied potential, plays a substantial role in tuning the efficiency of photoinduced charge separation and collection. Furthermore, the investigation of the charge injection kinetics confirmed that, even in the absence of applied bias, ATO and WO 3 are the best substrates for the oxidative quenching of poorly reducing PDI excited states, with at least a fraction of them injecting within <200 fs. The charge-separated states recombination occurs on longer time scales, allowing for their exploitation to drive demanding chemical reactions, as confirmed in photoelectrochemical water oxidation using IrO 2 -modified ATO-PDI photoanodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.