Test results are presented for laminar-flow seals that are representative of buffered-flow oil seals in centrifugal compressors. The seals are short (L∕D≅0.21), with a diameter of 117mm and a clearance-to-radius ratio 0.0007. A smooth seal, a seal with one central groove, and a seal with three grooves were tested. Groove geometries employed are representative of industrial practice for compressors with a groove-depth to clearance ratio on the order of 6. Tests were conducted at 4000, 7000, and 10,000rpm shaft speed with delta pressures across the seals of 21, 45, and 69bars. For all cases, the flow was laminar. The seals were tested from a centered position out to an eccentricity ratio of 0.7. Static data included leakage and equilibrium loci for a range of loads. Direct and cross-coupled stiffness and damping coefficients and direct mass coefficients were determined from dynamic tests. For the smooth seal, comparisons between measurements and predictions were reasonable for the direct and cross-coupled stiffness and damping coefficients; however, measured added mass coefficients were roughly ten times larger than predicted. Predictions for the grooved seals from a “deep-groove” model that assumed zero pressure oscillations in the grooves greatly over predicted the influence of the grooves. In a centered position, smooth and grooved seals had comparable leakage performance. At higher eccentricity ratios, the grooved seals leaked modestly more. For eccentricity ratios less than approximately 0.3, the grooved seals and the smooth seal had qualitatively similar static and dynamic characteristics. In terms of cross-coupled stiffness coefficients, the grooved seals were less stable than the smooth seal at eccentricity ratios greater than approximately 0.5 but had significantly lower cross-coupled coefficients at reduced eccentricity ratios between zero and 0.3. A grooved centered seal is more stable than a smooth centered seal. The smooth seal had higher damping than the grooved seals and had moderately better centering capabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.