VDACs (Voltage Dependent Anion selective Channels) are a family of pore-forming proteins discovered in the mitochondrial outer membrane. In the animal kingdom, mammals show a conserved genetic organization of the VDAC genes, corresponding to a group of three active genes. Three VDAC protein isoforms thus exist. From a historically point of view most of the data collected about this protein refer to the VDAC1 isoform, the first to be identified and also the most abundant in the organisms. In this work we compare the information available about the three VDAC isoforms, with a special emphasis upon the human proteins, here considered prototypical of the group, and we try to shed some light on specific functional roles of this apparently redundant group of proteins. A new hypothesis about the VDAC(s) involvement in ROS control is proposed. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.
Voltage-dependent anion channels (VDACs) are expressed in three isoforms, with common channeling properties and different roles in cell survival. We show that VDAC1 silencing potentiates apoptotic challenges, whereas VDAC2 has the opposite effect. Although all three VDAC isoforms are equivalent in allowing mitochondrial Ca 2 þ loading upon agonist stimulation, VDAC1 silencing selectively impairs the transfer of the low-amplitude apoptotic Ca 2 þ signals. Co-immunoprecipitation experiments show that VDAC1, but not VDAC2 and VDAC3, forms complexes with IP 3 receptors, an interaction that is further strengthened by apoptotic stimuli. These data highlight a non-redundant molecular route for transferring Ca 2 þ signals to mitochondria in apoptosis.
VDACs are a family of pore-forming proteins mainly located in the mitochondrial outer membrane. In mammals three isoforms exist. In this work we review the information available about them with the addition of new results. We have compared the human VDACs transformed in a yeast strain lacking the endogenous porin. VDAC1 and 2 are able to complement the lack of porin in mitochondrial respiration and modulation of ROS. VDAC3 has a limited ability to support the mitochondrial respiration and has no influence in the control of ROS production. The over-expression of VDAC isoforms in wild type yeast strain led to a dramatic sensitivity to oxidative stress, especially for VDAC3, and a shorter lifespan in respiratory conditions. Real-time PCR comparison of the isoforms indicated that in HeLa cells VDAC1 is 10 times more abundant than VDAC2 and 100 times than VDAC3. The over-expression of any single isoform caused a 10 times increase of the transcripts of VDAC2 and VDAC3, while VDAC1 is not changed by the over-expression of the other isoforms. Models of VDAC2 and VDAC3 isoform structure showed that they could be made of a 19-strand beta-barrel and an N-terminal sequence with variable features. In this work we show for the first time a functional characterization of VDAC3 in a cellular context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.