Introduction: Existing old masonry arch bridges represent an architectural and cultural heritage of inestimable value because most of them were built in the last century and are still in service. They represent a very important part of roads and railways networks, having also an important strategic role. They are actually serving roads characterized by transit loads definitively heavier and more frequent than the ones of the past. Moreover, very often maintenance absence and material worn away, increased by the way by the environmental conditions, accelerate more and more the elements deterioration with a consequent loss of integrity and reduction of their carrying capacity. Methods: In this paper the seismic assessment of an old multi span masonry arch bridge still in service is evaluated. The bridge, located in Southern Italy, was built before the Second World War and crosses the “Cavone” River, from which it takes the name. Results and Conclusion: A series of numerical analyses are performed in order to evaluate its seismic performance and the model sensitivity with respect to the assumed masonry mechanical properties.
Existing old masonry arch bridges represent an architectural and cultural heritage of inestimable value, assuming nowadays an important strategic role since most of them are still in service and link roads of primary importance for vehicular traffic. They were mostly built in the last century without considering any horizontal action, and nowadays are serving roads characterized by a transit loads certainly heavier and more frequent than the ones of past. Moreover, very often due to absence of maintenance and to weathering conditions, the elements deteriorate more and more with a consequent loss of integrity and reduction of their carrying capacity. In this paper the seismic assessment of an old multi span masonry arch bridge still in service is illustrated. Pushover analyses are performed with the aim to investigate the numerical model sensitivity and the influence on the global nonlinear response of the bridge components
Estimating the saftey of an ancient masonry arch bridge is a legitimate, but very interesting, structural engineering challenge. This is due to the fact that most of these bridges are still in service and suffer from higher and more frequent cyclic loads, a problem not encountered in the past. Therefore, for these structures it is important to know the actual fatigue strength rather than the ultimate carrying capacity in order to provide useful indications on the remaining service life with also possible traffic load limitations. In this article, different models are applied according to the stress-life curve method for estimating the fatigue strength of a case study: an ancient multi-span masonry arch bridge still in service. The obtained results highlight that, unlike steel elements, current design codes do not provide any relevant indication as to the fatigue strength assessment of existing masonry membratures. Moreover, appropriate stress-life curves are needed for evaluating the actual capacity and residual service life of low-strength masonry elements under cycling loads
Safety assessment with respect to seismic and vertical loads of existing and very old masonry structures is currently a central topic for the scientific engineering community. In particular, there are many ancient bridges still in service that are subjected to higher and more frequent cyclic loads. For these structures, it is important to determine the actual fatigue strength, rather than the ultimate carrying capacity. In this way the remaining service life, with possible traffic load limitations, may be estimated. This paper reports an updated review of the state-of-the art on recently published fatigue models that account for deterioration effects under cyclic loads. In addition, results related to fatigue performance of a bridge are shown and comments are provided. The numerical comparisons among existing fatigue models reveal that the application of the available fatigue models is particularly problematic for ancient masonry elements, where appropriate stress-life curves are required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.