The seismic response of a medieval church in Central Italy is analyzed considering the two roof configurations, i.e., reinforced concrete and timber roofs, that the church had in different periods of its existence. Structural interventions and changes are common in the churches of this territory, where frequent earthquakes put these buildings at risk. The church studied here, St. Salvatore in Acquapagana (Serravalle di Chienti, province of Macerata), was damaged by the 1997 Umbria-Marche and the 2016 Central Italy earthquakes. Between these two seismic events, the church was repaired, and the concrete roof was substituted with a lighter timber roof. To investigate the influence of this change on the seismic response, a study was performed at the building and façade macroelement scales using the finite element model and rigid body spring model, respectively. For each approach, the two roof configurations were considered, and two strong motion records, from September 26, 1997, and October 30, 2016, were applied. The results show that the concrete roof improves the box-like behavior, but it increases the vulnerability of the masonry structures, characterized by a limited tensile strength. Conversely, in the timber roof configuration, the most vulnerable areas of the structure are the intersections between structural elements.
The Italian wars between the 15th and 16th centuries led to a substantial modification of the military architecture for the defense of the cities. This was essentially determined by the enormous progress of the artillery. While the typical medieval defensive walls were substantially of stone walls, or bricks, rather high even if of considerable thickness, during the Renaissance period the defensive artifacts become considerably thicker as they consisted of a large embankment that was reinforced only externally by a well organized masonry cladding. The research aims to evaluate, by means of Rigid Body-Spring Model (RBSM) dynamic analyses, the progressive damage due to the artillery strikes modeled as impulses. 1344 COMPDYN 2019 7 th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, M. Fragiadakis (eds.
The development of artillery in Europe at the end of the Middle Ages brought a necessary change in military architecture. This change was a radical rethinking of the entire geometry and architectural design of city walls which required an increase in thickness to resist repeated artillery strikes. The damage due to the impact loads on Middle Age fortification walls is analyzed herein with explicit dynamic analyses. This study was developed both with finite element models and an innovative rigid body-spring model with diagonal springs (RBSM), showing the different peculiarities of these two different approaches and how their results can be integrated. The numerical models clearly showed that the presence of an inner core of softer material tends to modify the impact effects by reducing the degree of damage at the expense of an extension of the damaged area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.