A water-in-diesel microwave sensor based on a substrate integrated waveguide (SIW) microwave applicator is designed and characterized in this study. The interaction between the microwave electromagnetic field and the diesel fuel contaminated with small concentrations of water is obtained via suitable radiating slots placed on the top of an SIW waveguiding structure. The SIW applicator working frequency is chosen by observing the behavior of the complex dielectric permittivity of the fuel–water blend based on a preliminary wide band investigation. The performances of the SIW microwave sensor are evaluated in terms of scattering parameter modulus |S21| as a function of the water concentration in ppm. The best sensitivity Δ|S21|Δρ=1.42 mdB/ppm is obtained at a frequency of f=9.76 GHz, with a coefficient of determination R2=0.94. The sensor is low-cost, low profile and ensures a good sensitivity for constant and real-time monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.