The accurate analysis of the behaviour of a polymeric composite structure, including the determination of its deformation over time and also the evaluation of its dynamic behaviour under service conditions, demands the characterisation of the viscoelastic properties of the constituent materials. Linear viscoelastic materials should be experimentally characterised under (i) constant static load and/or (ii) harmonic load. In the first load case, the viscoelastic behaviour is characterised through the creep compliance or the relaxation modulus. In the second load case, the viscoelastic behaviour is characterised by the complex modulus, E*, and the loss factor, η. In the present paper, a powerful and simple implementing technique is proposed for the processing and analysis of dynamic mechanical data. The idea is to obtain the dynamic moduli expressions from the Exponential-Power Law Method (EPL) of the creep compliance and the relaxation modulus functions, by applying the Carson and Laplace transform functions and their relationship to the Fourier transform, and the Theorem of Moivre. Reciprocally, once the complex moduli have been obtained from a dynamic test, it becomes advantageous to use mathematical interconversion techniques to obtain the time-domain function of the relaxation modulus, E(t), and the creep compliance, D(t). This paper demonstrates the advantages of the EPL method, namely its simplicity and straightforwardness in performing the desirable interconversion between quasi-static and dynamic behaviour of polymeric and polymer-composite materials. The EPL approximate interconversion scheme to convert the measured creep compliance to relaxation modulus is derived to obtain the complex moduli. Finally, the EPL Method is successfully assessed using experimental data from the literature.
The use of glass fibre reinforced polymer (GFRP) composites in civil engineering structures has seen considerable growth in recent years due to their high strength, low self-weight, and corrosion resistance, namely when compared to traditional materials, such as steel and reinforced concrete. To enable the structural use of GFRP composite materials in civil engineering applications, especially in footbridges, it is necessary to gather knowledge on their structural behaviour, particularly under dynamic loads, and to evaluate the ability of current design tools to predict their response. In fact, excessive vibration has a major influence on the in-service performance (comfort) of slender structures as well on their service life. The use of composite materials that combine high damping capacity with relatively high stiffness and low mass can provide functional and economic benefits, especially for footbridges. This paper aims to investigate the dynamic behaviour of GFRP free-supported beams to evaluate their modal characteristics (frequency, damping, and modal shape). To assess the benefits of using a structure made of pultruded GFRP rather than a conventional material—steel, a comparative analysis between the dynamic characteristics of GFRP and steel beams is performed. To specifically address material damping and to minimize the interference of the boundary conditions, the beams are tested in a free condition, resting on a low-density foam base. The results show that the damping capacity of GFRP is much higher than that of steel, as the measured damping factor of GFRP is five times higher than that of steel for the same boundary conditions and similar geometry. Furthermore, the fact that the frequencies of the tested specimens resemble for the two different materials highlights the perceived damping qualities of the polymer-based composite material. Finally, an energy method for evaluating the influence of the scale factor on material damping is applied, which made it possible to infer that the damping varies as a function of frequency but is not explicitly affected by the length of the specimens.
Slender footbridges are prone to excessive vibrations due to pedestrian effects, and comfort criteria often govern their design. In this sense, composite materials that combine high damping capacity with relatively high stiffness and low mass can provide functional benefits. This paper presents a study of the dynamic behaviour of an 11 m long hybrid footbridge made of two I-shaped pultruded glass fibre reinforced polymer (GFRP) main girders and a thin steel fibre reinforced self-compacting concrete (SFRSCC) deck, in operation since 2015. The main goals were (i) to improve the knowledge of the dynamic properties of composite footbridges and (ii) to assess the benefits of using a structure made of pultruded GFRP instead of a conventional material (steel), namely, considering its greater ability to dissipate energy. The resonant frequencies, damping ratios, and mode shapes of the footbridge were identified based on experimental testing. A finite element (FE) model of the footbridge was developed and calibrated with test data and used to simulate the effects of pedestrian loads. Simulations of the same type were conducted on an equivalent structural system made of steel profiles. The simulation results of the two short-span footbridges with similar natural frequencies enhance the impact of high-order harmonics of the pedestrian load in the dynamic response. It is also shown that polymer-based components can contribute to limiting vibrations in footbridges or even act as self-dampers.
<p>This paper describes the experimental and numerical studies developed to assess the dynamic behaviour of a glass fibre reinforced polymer-concrete hybrid footbridge under pedestrian excitation. The analyses include an experimental assessment of the modal properties and the measurement of the dynamic bridge response to group loads. The numerical modelling of pedestrian effects evidences the difficulty in reproducing the loads applied to the footbridge and the need to consider the third and fourth harmonics of the walking frequency in the applied loads to reproduce the measured response accurately. Furthermore, by comparison with the simulation results of pedestrian effects on an equivalent length structure made of steel, it is shown that the GFRP-concrete structure possesses a higher dissipation capacity and a more favourable dynamic behaviour.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.