Background/Aims: Heat shock protein 70 (HSP70) has been recently described with extracellular actions, where it is actively released in inflammatory conditions. Acting as DAMPs (damage associated molecular pattern), extracellular HSP70 (eHSP70) interacts with membrane receptors and activates inflammatory pathways. At this context, the receptor for advanced glycation endproducts (RAGE) emerges as a possible candidate for interaction with eHSP70. RAGE is a pattern-recognition receptor and its expression is increased in several diseases related to a chronic pro-inflammatory state. One of the main consequences of RAGE ligand-binding is the ERK1/2 (extracellular signal–regulated kinases)-dependent activation of NF-kB (nuclear factor kappa B), which leads to expression of TNF-α (tumor necrosis factor alpha) and other cytokines. The purpose of this work is to elucidate if eHSP70 is able to evoke RAGE-dependent signaling using A549 human lung cancer cells, which constitutively express RAGE. Methods: Immunoprecipitation and protein proximity assay were utilized to demonstrate the linkage between RAGE and eHSP70. To investigate RAGE relevance on cell response to eHSP70, siRNA was used to knockdown the receptor expression. Signaling pathways activation were evaluated by western blotting, gene reporter luciferase and real time quantitative PCR. Results: Protein eHSP70 shown to be interacting physically with the receptor RAGE in our cell model. Treatment with eHSP70 caused ERK1/2 activation and NF-κB transactivation impaired by RAGE knockdown. Moreover, the stimulation of pro-inflammatory cytokines expression by eHSP70 was inhibited in RAGE-silenced cells. Finally, conditioned medium of eHSP70-treated A549 cells caused differential effects in monocytes cytokine expression when A549 RAGE expression is inhibited. Conclusions: Our results evidence eHSP70 as a novel RAGE agonist capable of influence the cross-talk between cancer and immune system cells.
Retinoic acid (RA) morphogenetic properties have been used in different kinds of therapies, from neurodegenerative disorders to some types of cancer such as promyelocytic leukemia and neuroblastoma. However, most of the pathways responsible for RA effects remain unknown. To investigate such pathways, we used a RA-induced differentiation model in the human neuroblastoma cells, SH-SY5Y. Our data showed that n-acetyl-cysteine (NAC) reduced cells' proliferation rate and increased cells' sensitivity to RA toxicity. Simultaneously, NAC pre-incubation attenuated nuclear factor erythroid 2-like factor 2 (NRF2) activation by RA. None of these effects were obtained with Trolox as antioxidant, suggesting a cysteine signalization by RA. NRF2 knockdown increased cell sensibility to RA after 96 h of treatment and diminished neuroblastoma proliferation rate. Conversely, NRF2 overexpression limited RA anti-proliferative effects and increased cell proliferation. In addition, a rapid and non-genomic activation of the ERK 1/2 and PI3K/AKT pathways revealed to be equally required to promote NRF2 activation and necessary for RA-induced differentiation. Together, we provide data correlating NRF2 activity with neuroblastoma proliferation and resistance to RA treatments; thus, this pathway could be a potential target to optimize neuroblastoma chemotherapeutic response as well as in vitro neuronal differentiation protocols.
Steatosis is the accumulation of neutral lipids in the cytoplasm. In the liver, it is associated with overeating and a sedentary lifestyle, but may also be a result of xenobiotic toxicity and genetics. Non-alcoholic fatty liver disease (NAFLD) defines an array of liver conditions varying from simple steatosis to inflammation and fibrosis. Over the last years, autophagic processes have been shown to be directly associated with the development and progression of these conditions. However, the precise role of autophagy in steatosis development is still unclear. Specifically, autophagy is necessary for the regulation of basic metabolism in hepatocytes, such as glycogenolysis and gluconeogenesis, response to insulin and glucagon signaling, and cellular responses to free amino acid contents. Also, genetic knockout models for autophagy-related proteins suggest a critical relationship between autophagy and hepatic lipid metabolism, but some results are still ambiguous. While autophagy may seem necessary to support lipid oxidation in some contexts, other evidence suggests that autophagic activity can lead to lipid accumulation instead. This structured literature review aims to critically discuss, compare, and organize results over the last 10 years regarding rodent steatosis models that measured several autophagy markers, with genetic and pharmacological interventions that may help elucidate the molecular mechanisms involved.
Few studies investigated the biological effects of American grape cultivars. We investigated the metabolic response after acute consumption of grape juice or wine from Bordo grapes (Vitis labrusca) in a placebo-controlled crossover study with fifteen healthy volunteers. Blood samples were collected 1 hour after the intake of 100 mL of water, juice, or wine to measure TBARS, ABTS, FRAP, glucose, and uric acid levels. To evaluate differences in cellular response, intracellular reactive species production (DCFH-DA) and metabolic mitochondrial viability (MTT) were assessed after exposure of human neuron-like cells (SH-SY5Y) to juice or wine. Glycemia was reduced after juice or wine consumption, whereas blood levels of uric acid were reduced after juice consumption but increased after wine consumption. Juice and wine consumption reduced plasma lipid peroxidation and increased plasma antioxidant capacity (ABTS and FRAP assays). Furthermore, juice inhibited H2O2-induced intracellular production of reactive species (RS) and increased the viability of SH-SY5Y cells. In contrast, wine (dealcoholized) exhibited a per se effect by inducing the production of RS and reducing cell viability. These results indicate a positive impact of acute consumption of Bordo juice and wine on human oxidative status, whereas only juice had protective effects against oxidative stress-induced cytotoxicity.
Exposure to toxic levels of fatty acids (lipotoxicity) leads to cell damage and death and is involved in the pathogenesis of the metabolic syndrome. Since the metabolic consequences of lipotoxicity are still poorly understood, we studied the bioenergetic effects of the saturated fatty acid palmitate, quantifying changes in mitochondrial morphology, real-time oxygen consumption, ATP production sources, and extracellular acidification in hepatoma cells. Surprisingly, glycolysis was enhanced by the presence of palmitate as soon as 1 h after stimulus, while oxygen consumption and oxidative phosphorylation were unchanged, despite overt mitochondrial fragmentation. Palmitate only induced mitochondrial fragmentation if glucose and glutamine were available, while glycolytic enhancement did not require glutamine, showing it is independent of mitochondrial morphological changes. Redox state was altered by palmitate, as indicated by NAD(P)H quantification. Furthermore, the mitochondrial antioxidant mitoquinone, or a selective inhibitor of complex I electron leakage (S1QEL) further enhanced palmitate-induced glycolysis. Our results demonstrate that palmitate overload and lipotoxicity involves an unexpected and early increase in glycolytic flux, while, surprisingly, no changes in oxidative phosphorylation are observed. Interestingly, enhanced glycolysis involves signaling by mitochondrially-generated oxidants, uncovering a novel regulatory mechanism for this pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.