One of the biggest challenges for the use of Unmanned Aerial Vehicles (UAVs) in large-scale real-world applications is security. However, most of research projects related to robotics does not discuss security issues, moving on directly to studying classical problems (i.e., perception, control, planning). This paper evaluates the effects of availability issues (Denial of Service attacks) in two commonly used commercially available UAVs (AR.Drone 2.0 and 3DR SOLO). Denial of Service (DoS) attacks are made while the vehicles are navigating, simulating common conditions found both by the general public and in a research scenario. Experiments show how effective such attacks are and demonstrate actual security breaches that create specific vulnerabilities. The results indicate that both studied UAVs are susceptible to several types of DoS attacks which can critically influence the performance of UAVs during navigation, including a decrease in camera functionality, drops in telemetry feedback and lack of response to remote control commands. We also present a tool that can be used as a failsafe mechanism to alert the user when a drone is reaching out a determined flight limit range, avoiding availability issues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.