From a physical/dynamical system perspective, the potential well represents the proportional mass of points that escape the neighbourhood of a given point. In the last 20 years, several works have shown the importance of this quantity to obtain precise approximations for several recurrence time distributions in mixing stochastic processes and dynamical systems. Besides providing a review of the different scaling factors used in the literature in recurrence times, the present work contributes two new results: (1) For ϕ-mixing and ψ-mixing processes, we give a new exponential approximation for hitting and return times using the potential well as the scaling parameter. The error terms are explicit and sharp. (2) We analyse the uniform positivity of the potential well. Our results apply to processes on countable alphabets and do not assume a complete grammar.
Let {X k } k≥1 be a stationary and ergodic process with joint distribution µ where the random variables X k take values in a finite set A. Let R n be the first time this process repeats its first n symbols of output. It is wellknown that n −1 log R n converges almost surely to the entropy of the process. Refined properties of R n (large deviations, multifractality, etc) are encoded in the return-time L q -spectrum defined as R(q) = lim n
Let $(X_k)_{k\geq 0}$ be a stationary and ergodic process with joint distribution $\mu $ , where the random variables $X_k$ take values in a finite set $\mathcal {A}$ . Let $R_n$ be the first time this process repeats its first n symbols of output. It is well known that $({1}/{n})\log R_n$ converges almost surely to the entropy of the process. Refined properties of $R_n$ (large deviations, multifractality, etc) are encoded in the return-time $L^q$ -spectrum defined as provided the limit exists. We consider the case where $(X_k)_{k\geq 0}$ is distributed according to the equilibrium state of a potential with summable variation, and we prove that where $P((1-q)\varphi )$ is the topological pressure of $(1-q)\varphi $ , the supremum is taken over all shift-invariant measures, and $q_\varphi ^*$ is the unique solution of $P((1-q)\varphi ) =\sup _\eta \int \varphi \,d\eta $ . Unexpectedly, this spectrum does not coincide with the $L^q$ -spectrum of $\mu _\varphi $ , which is $P((1-q)\varphi )$ , and it does not coincide with the waiting-time $L^q$ -spectrum in general. In fact, the return-time $L^q$ -spectrum coincides with the waiting-time $L^q$ -spectrum if and only if the equilibrium state of $\varphi $ is the measure of maximal entropy. As a by-product, we also improve the large deviation asymptotics of $({1}/{n})\log R_n$ .
In the context of the discrete-time stochastic processes, this thesis presents new results on Poincaré recurrence theory. After a complete review of recent results, we present a new theorem on the exponential approximations for hitting and return times distributions. We show that the scaling parameter of the approximate distribution, called "potential well", brings fundamental informations about the structure of the target set. Moreover, we show that the asymptotic properties of the potential well influences several aspects of the recurrence times, such as limiting distributions and moments. Finally, we apply our results to obtain the waiting time spectrum as a function of the Rényi entropy for classes of processes not covered by previous works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.