ABSTRACT:The translational diffusion of bovine rhodopsin, the Caz+-activated adenosinetriphosphatase of rabbit muscle sarcoplasmic reticulum, and the acetylcholine receptor monomer of Torpedo marmorata has been examined at a high dilution (molar ratios of lipid/protein 1 3000/1) in liquidcrystalline phase phospholipid bilayer membranes by using the fluorescence recovery after photobleaching technique. These integral membrane proteins having molecular weights of about 37 000 for rhodopsin, about 100000 for the adenosinetriphosphatase, and about 250 000 for the acetylcholine receptor were reconstituted into membranes of dimyristoylphosphatidylcholine (rhodopsin and acetylcholine receptor), soybean lipids (acetylcholine receptor), and a total lipid extract of rabbit muscle sarcoplasmic reticulum (adenosinetriphosphatase). The translational diffusion coefficients of all the proteins at 310 K were found to be in the range (1-3) X cm2/s. In consideration of the sizes of the membranebound portions of these proteins, this result is in agreement with the weak dependence of the translational diffusion coefficient upon diffusing particle size predicted by continuum fluid hydrodynamic models for the diffusion in membranes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.