It is known that new power transmission line inspection techniques have been developed over the last few years with great potential to improve and, in some cases, even replace traditional inspection procedures such as using helicopters and cars. A series of Unmanned Aerial Vehicles (UAVs) such as fixed-wing or rotary-wing UAVs, and vehicles that climb on the power transmission line, promise to revolutionize the inspection market. In this light, at least 39 new research studies and/or products have been conducted and/or introduced to the market, respectively. However, in an incipient way, some works point to the fusion of some technologies: the development of multi-rotor UAVs and the ability to connect and move over the power transmission line. In line with this, the current work was proposed, with significant unprecedented advances (such as an over-actuated control capacity with tilt rotors, the capability of a displacement in the angle, and the maintenance of active motors on the power transmission line), and the design, modeling, and control of an over-actuated UAV able to move over the conductor cable without the need for a new locomotion system is presented. The aircraft allows for a greater response and the indispensable ability to approximate landing in a power transmission line arbitrary position rather than the catenary lowest point (due to its ability to forward/backward move using the tilting rotors). Its design is detailed, its subsystems are described, and its normal and coupled flight mode dynamics are modeled. The results show good stability and reliable maneuvers for the coupling-to-power-transmission-line flight mode, without any overshoots, and the ability to follow the entire catenary through different Real Control Action (RCA) sets.
The movement of air from the environment to the alveoli is a vital and complex phenomenon that occurs due to variations in intrathoracic and airway pressures in relation to the atmosphere. The construction of didactic prototypes can minimize the abstraction required in these in vivo phenomena. In this study, we automated a didactic prototype of pulmonary ventilation already described in literature to simulate and exhibit variations in intrathoracic pressure during diaphragmatic function. A pulmonary ventilation (PV) prototype was produced with recyclable materials, and automated by adapting a pressure sensor in the system to generate pressure curves as a function of time during the simulation of diaphragmatic function. The automated plunger’s downward traction induced by the servomotor (such as diaphragmatic) reduced the pressure inside the bottle (intrathoracic), and this variation can be observed graphically on a computer interface while the balloon was expanded, and atmospheric air invaded its interior. Conclusion: The incorporation of technology into a simple PV prototype allowed a safe and simulated demonstration of how the diaphragm induces the variation of the intrathoracic pressure in relation to the atmosphere concomitantly with the pulmonary deformation that occurs during inspiration and exhalation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.