Genetic diversity analysis has guided the choice of appropriate parents in breeding programs. Multivariate statistical methods such as discriminant analysis are used to obtain the necessary results in these studies. However, to obtain reliable results, one must meet assumptions such as covariance matrix heterogeneity and multivariate normality of the observation vector. Artificial Neural Network (ANN), Support Vector Machine (SVM), Decision Tree (DT) and its refinements do not have these assumptions and may be used in the choice of appropriate parents. This study evaluates the robustness of the Fisher's discriminant function under covariance matrix heterogeneity and multivariate non-normal random vectors. The results were compared with those obtained from Quadratic Discriminant Analysis (QDA), ANN, SVM and DT. Scenarios characterized by heterogeneous covariance matrices and multivariate non-normal random vectors were simulated. Considering the apparent error rate (APER), the SVM method (APER-Normal = 0.07; APER-Poisson = 0.13) and quadratic discriminant method (APER-Normal = 0.09; APER-Poisson = 0.09) presented better results for scenarios simulated with covariance matrix heteroscedasticity. For scenarios with multivariate normality and covariance matrix homoscedasticity, the SVM (APER = 0.15) and ANN (APER = 0.06) presented best results. For situations in which the data had multivariate Poisson distribution and covariance matrix homogeneity, the SVM (APER = 0.15), Fisher's discriminant function (APER = 0.19) and ANN (APER = 0.19) presented better performances. Finally, DT refinements (Bagging, Random Forest and Boosting) presented APER values less than 0.25 and are shown to be alternatives.Additional Keywords: quadratic discriminant function; multivariate analysis, simulation. ResumoAnálises de diversidade genética têm orientado a escolha de genitores apropriados em programas de melhoramento. Métodos de Estatística Multivariada, como por exemplo, as análises discriminantes são utilizadas para obtenção dos resultados necessários nesses estudos. Entretanto, a obtenção de resultados confiáveis está associada ao atendimento de pressupostos, como por exemplo a heterogeneidade de matrizes de covariância e normalidade multivariada do vetor de observações. Redes Neurais Artificiais (RNA), Máquina de Vetor Suporte (MVS), Árvores de Decisão (AD) e seus refinamentos, não possuem pressupostos e podem ser utilizadas para esse fim. O objetivo desse trabalho foi avaliar a robustez da função discriminante de Fisher na presença de matrizes de covariâncias heterogêneas e vetores aleatórios não normais multivariados. Os resultados foram comparados com aqueles provenientes da função discriminante quadrática (FDQ), RNA, MVS e AD. Foram simulados cenários caracterizados por matrizes de covariâncias heterogêneas e vetores aleatórios não normais multivariados. Considerando a Taxa de Erro Aparente média (TEA) a MVS (TEA-Normal=0,07; TEA-Poisson=0,13) e FDQ (TEA-Normal=0,09; TEA-Poisson=0,09) apresentaram melhores resultados para os simu...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.