This work aims at presenting a new strategy for the use of cork by-products on the development of sustainable composites with potential applications in rotational molding. In this study, different cork granulometries (0.15-3 mm) and matrix/cork ratios (90/10, 85/15, 80/20) are analyzed to access the processability of medium-density polyethylene (MDPE) with cork by rotational molding. The influence of processing parameters, such as the mold peak internal air temperature (PIAT) (200-240 • C), is analyzed and correlated with the aesthetics, morphological and mechanical properties of the parts. The aim is to obtain a complete understanding of the processing-structure-property relationships. Defect-free parts are obtained with thin granulometric cork powders at a maximum of 10% by weight in PE/cork composites. The increase in cork content reduces the sintering capability and increases the porosity, wall thickness, and surface defects, simultaneously weakening the mechanical properties. The increase in PIAT favors a more compact structure and reveals better impact properties. All the parts are soft on touch and transmit the comfort and sensation of warm feeling of the cork. Moreover, lightweight parts and hydrophobic surfaces are achieved from the cork intrinsic properties. As a natural material, cork darkens its color with temperature, which is attributed to the reactions of the extractives within the components of cork, with no degradation associated. The work shows that polymer cork composites (CPC) are suitable for rotational molding within the processing window characteristic of PE, to achieve innovative and sustainable products with unique aesthetics and functionalities given by the cork material.
This research addresses the importance of pine wood sawdust granulometry on the processing of medium-density polyethylene (MDPE)/wood composites by rotational molding and its effects on the morphological, mechanical and aesthetical properties of parts, aiming to contribute for the development of sustainable wood polymer composites (WPC) for rotational molding applications. Pine wood sawdust was sieved (<150, 150, 300, 500, 710, >1000 µm) and analyzed for its physical, morphological and thermal characteristics. Rotational molded parts were produced with matrix/wood ratios from 90/10 to 70/30 wt% considering different wood granulometries. As a natural material, wood changed its color during processing. Granulometries below 500 µm presented better sintering, homogeneity and less part defects. Furthermore, 300–500 µm favored the impact resistance (1316 N), as irregular brick-shaped wood was able to anchor to PE despite the weak interfacial adhesion observed. The increase of wood content from 10 to 30% reduced the impact properties by 40%, as a result of a highly porous structure formed, revealing sintering difficulties during processing. WPC parts of differentiated aesthetics and functionalities were achieved by rotational molding. A clear relationship between wood granulometry and WPC processing, structure and properties was identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.