Typical 2-Cys peroxiredoxins (2-Cys Prx) are ubiquitous Cys-based peroxidases, which are stable as decamers in the reduced state, and may dissociate into dimers upon disulfide bond formation. A peroxidatic Cys (CP) takes part of a catalytic triad, together with a Thr/Ser and an Arg. Previously, we described that the presence of Ser (instead of Thr) in the active site stabilizes yeast 2-Cys Prx as decamers. Here, we compared the hyperoxidation susceptibilities of yeast 2-Cys Prx. Notably, 2-Cys Prx containing Ser (named here Ser-Prx) were more resistant to hyperoxidation than enzymes containing Thr (Thr-Prx). In silico analysis revealed that Thr-Prx are more frequent in all domains of life, while Ser-Prx are more abundant in bacteria. As yeast 2-Cys Prx, bacterial Ser-Prx are more stable as decamers than Thr-Prx. However, bacterial Ser-Prx were only slightly more resistant to hyperoxidation than Thr-Prx. Furthermore, in all cases, organic hydroperoxide inhibited more the peroxidase activities of 2-Cys Prx than hydrogen peroxide. Moreover, bacterial Ser-Prx displayed increased thermal resistance and chaperone activity, which may be related with its enhanced stability as decamers compared to Thr-Prx. Therefore, the single substitution of Thr by Ser in the catalytic triad results in profound biochemical and structural differences in 2-Cys Prx.
The emergence and re-emergence of bacterial strains resistant to multiple drugs represent a global health threat, and the search for novel biological targets is a worldwide concern. AhpC are enzymes involved in bacterial redox homeostasis by metabolizing diverse kinds of hydroperoxides. In pathogenic bacteria, AhpC are related to several functions, as some isoforms are characterized as virulence factors. However, no inhibitor has been systematically evaluated to date. Here we show that the natural ent-kaurane Adenanthin (Adn) efficiently inhibits AhpC and molecular interactions were explored by computer assisted simulations. Additionally, Adn interferes with growth and potentializes the effect of antibiotics (kanamycin and PMBN), positioning Adn as a promising compound to treat infections caused by multiresistant bacterial strains.
Multiple drug resistance (MDR) bacterial strains are responsible by 1.2 million of human deaths all over the world. The pathogens possess efficient enzymes which are able to mitigate the toxicity of reactive oxygen species (ROS) produced by some antibiotics and the host immune cells. Among them, the bacterial peroxiredoxin alkyl hydroperoxide reductase C (AhpC) is able to decompose efficiently several kinds of hydroperoxides. To decompose their substrates AhpC use a reactive cysteine residue (peroxidatic cysteine—CysP) that together with two other polar residues (Thr/Ser and Arg) comprise the catalytic triad of these enzymes and are involved in the substrate targeting/stabilization to allow a bimolecular nucleophilic substitution (SN2) reaction. Additionally to the high efficiency the AhpC is very abundant in the cells and present virulent properties in some bacterial species. Despite the importance of AhpC in bacteria, few studies aimed at using natural compounds as inhibitors of this class of enzymes. Some natural products were identified as human isoforms, presenting as common characteristics a bulk hydrophobic moiety and an α, β-unsaturated carbonylic system able to perform a thiol-Michael reaction. In this work, we evaluated two chemically related natural products: 1,4-dihydroxy-2-(3’,7’-dimethyl-1’-oxo-2’E,6’-octadienyl) benzene (C1) and 4-hydroxy-2-(3’,7’-dimethyl-1’-oxo-2’E,6’-octadienyl) benzoic acid (C2), both were isolated from branches Piper crassinervium (Piperaceae), over the peroxidase activity of AhpC from Pseudomonas aeruginosa (PaAhpC) and Staphylococcus epidermidis (SeAhpC). By biochemical assays we show that although both compounds can perform the Michael addition reaction, only compound C2 was able to inhibit the PaAhpC peroxidase activity but not SeAhpC, presenting IC50 = 20.3 μM. SDS-PAGE analysis revealed that the compound was not able to perform a thiol-Michael addition, suggesting another inhibition behavior. Using computer-assisted simulations, we also show that an acidic group present in the structure of compound C2 may be involved in the stabilization by polar interactions with the Thr and Arg residues from the catalytic triad and several apolar interactions with hydrophobic residues. Finally, C2 was not able to interfere in the peroxidase activity of the isoform Prx2 from humans or even the thiol proteins of the Trx reducing system from Escherichia coli (EcTrx and EcTrxR), indicating specificity for P. aeruginosa AhpC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.