Previous studies indicated preconditioning of the brain with sublethal ischemic insults separated by many hours, protected tissues from a subsequent lethal insult. We recently reported neuroprotection by a rapid preconditioning paradigm where a sublethal ischemic insult preceded test ischemia by only 30 min. We hypothesize that neuroprotection caused by the rapid ischemic preconditioning (IPC) will result in lowered microglial, reactive astrocytes and increased normal neuronal cell counts. Wistar rats underwent normothermic (36.5-37 degrees C) global cerebral ischemia, produced by bilateral carotid artery ligation after lowering mean systemic blood pressure. The preconditioning ischemic insult lasted 2 min and was associated with a sufficient amount of time to provoke anoxic depolarization. After a 30-min reperfusion period, 10-min test ischemia was produced, and histopathology was assessed 3 and 7 days later. Normal neuronal cell counts for control rats at 3 days survival were significantly lower (by 58%) than in IPC animals. Although there was a trend toward protection in IPC rats at 7 days, the difference in normal neuronal cell count between the IPC and control groups was not significant. IPC rats at 3 days but not 7 days of survival showed a significantly lower microglial cell count (by 56%) than control rats. These results showed that the protection induced through IPC at 3 days of survival produced lower numbers of microglia, while maintaining normal neuronal cells. No significant differences between control and IPC groups were found in astrocytic cell count at any time of reperfusion in any region of the hippocampus studied. The beneficial effects of IPC may, therefore, involve anti-inflammatory processes that target microglial activation after cerebral ischemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.