Citrus is a globally important, perennial fruit crop whose rhizosphere microbiome is thought to play an important role in promoting citrus growth and health. Here, we report a comprehensive analysis of the structural and functional composition of the citrus rhizosphere microbiome. We use both amplicon and deep shotgun metagenomic sequencing of bulk soil and rhizosphere samples collected across distinct biogeographical regions from six continents. Predominant taxa include Proteobacteria, Actinobacteria, Acidobacteria and Bacteroidetes. The core citrus rhizosphere microbiome comprises Pseudomonas, Agrobacterium, Cupriavidus, Bradyrhizobium, Rhizobium, Mesorhizobium, Burkholderia, Cellvibrio, Sphingomonas, Variovorax and Paraburkholderia, some of which are potential plant beneficial microbes. We also identify over-represented microbial functional traits mediating plant-microbe and microbe-microbe interactions, nutrition acquisition and plant growth promotion in citrus rhizosphere. The results provide valuable information to guide microbial isolation and culturing and, potentially, to harness the power of the microbiome to improve plant production and health.
To re-examine the taxonomic status of Pseudomonas corrugata, 27 strains of this species were studied using a polyphasic approach. Numerical analysis of phenotypic data revealed two phena, A (including the P. corrugata type strain) and B, which could be clearly differentiated by the assimilation of mesotartrate, 2-ketogluconate and histamine. The mean DNA reassociation values with labelled DNA of P. corrugata type strain CFBP 2431T (phenon A) and strain CFBP 5447T (phenon B) were high for strains belonging to the same phenon (96.9 and 98.5%, respectively), whereas the DNA relatedness between the two phena was assessed as being close to 70%, which represents the value that is accepted for the definition of a bacterial species. Phena A and B were also differentiated by means of DNA profiles generated by heteroduplex mobility assay of PCR products of 16S rDNA hypervariable region 2, HaeIII restriction of the amplified internal transcribed spacer, REP- and BOX-PCR profiles, and by PCR with two pairs of specific primers. A comparison of the 16S rRNA sequences of strains CFBP 5447T and CFBP 5458 from phenon B with the available sequences of Pseudomonas species showed that these strains formed a cluster distinct from the P. corrugata type strain. Thus, a new species, Pseudomonas mediterranea, is proposed for strains of phenon B. The type strain is strain CFBP 5447T (= ICMP 14184T); its G+C content is 60.2 mol%.
Pseudomonas corrugata is a phytopathogenic bacterium, causal agent of tomato pith necrosis, yet it is an ubiquitous bacterium that is part of the microbial community in the soil and in the rhizosphere of different plant species. Although it is a very heterogeneous species, all the strains tested were able to produce short chain acyl homoserine lactone (AHL) quorum sensing signal molecules. The main AHL produced was N-hexanoyl-L-homoserine lactone (C(6)-AHL). An AHL quorum sensing system, designated PcoI/PcoR, was identified and characterized. The role of the quorum sensing system in the expression of a variety of traits was evaluated. Inactivation of pcoI abolished the production of AHLs. The pcoR mutant, but not the pcoI mutant, was impaired in swarming, unable to cause a hypersensitivity response on tobacco and resulted in a reduced tomato pith necrosis phenotype. The pcoI mutant showed a reduced antimicrobial activity against various fungi and bacteria when assayed on King's B medium. These results demonstrate that the AHL quorum sensing in Ps. corrugata regulates traits that contribute to virulence, antimicrobial activity and fitness. This is the first report of genes of Ps. corrugata involved in the disease development and biological control activity.
Bacteria; Proteobacteria; gamma subdivision; order Pseudomonadales; family Pseudomonadaceae; genus Pseudomonas. Microbiological properties: Gram-negative, oxidase-positive, non-spore forming rods; non-fluorescent on King's B medium; produces wrinkled and rarely smooth colonies on yeast peptone glucose agar or nutrient dextrose agar; yellow to brown diffusible pigments are frequently produced. Disease symptoms: The typical symptom on tomato is necrosis and/or hollowing of the pith of the stem; the syndrome determines loss of turgidity of the plant, hydropic/necrotic areas and long conspicuous adventitious roots on the stem. Biological control agent: In vitro assessed against plant pathogenic fungi and bacteria, as well as the phytotoxin indicator microorganims Rhodotorula pilimanae and Bacillus megaterium; in vivo used against pre- and post-harvest plant pathogens.
Pseudomonas corrugata CFBP 5454 produces two kinds of cyclic lipopeptides (CLPs), cormycin A and corpeptins, both of which possess surfactant, antimicrobial and phytotoxic activities. In this study, we identified genes coding for a putative non-ribosomal peptide synthetase and an ABC-type transport system involved in corpeptin production. These genes belong to the same transcriptional unit, designated crpCDE. The genetic organization of this locus is highly similar to other Pseudomonas CLP biosynthetic clusters. Matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) analysis revealed that transporter and synthetase genomic knock-out mutants were unable to produce corpeptins, but continued to produce cormycin A. This suggests that CrpCDE is the only system involved in corpeptin production in P. corrugata CFBP 5454. In addition, phylogenetic analysis revealed that the CrpE ABC transporter clustered with the transporters of CLPs with a long peptide chain. Strains depleted in corpeptin production were significantly less virulent than the wild-type strain when inoculated in tomato plants and induced only chlorosis when infiltrated into Nicotiana benthamiana leaves. Thus, corpeptins are important effectors of P. corrugata interaction with plants. Expression analysis revealed that crpC transcription occurs at high cell density. Two LuxR transcriptional regulators, PcoR and RfiA, have a pivotal role in crpC expression and thus in corpeptin production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.