Following a ligand-based drug design approach, a potent mixed formyl peptide receptor 1 (FPR1) and formyl peptide receptor-like 1 (FPRL1) agonist (14a) and a potent and specific FPRL1 agonist (14x) were identified. These compounds belong to a large series of pyridazin-3(2H)-one derivatives substituted with a methyl group at position 6 and a methoxy benzyl at position 4. At position 2, an acetamide side chain is essential for activity. Likewise, the presence of lipophilic and/or electronegative substituents in the position para to the aryl group at the end of the chain plays a critical role for activity. Affinity for FPR1 receptors was evaluated by measuring intracellular calcium flux in HL-60 cells transfected with FPR1, FPRL1, and FPRL2. Agonists were able to activate intracellular calcium mobilization and chemotaxis in human neutrophils. The most potent chemotactic agent (EC50 = 0.6 μM) was the mixed FPR/FPRL1 agonist 14h.
a b s t r a c tHuman neutrophil elastase (HNE) plays an important role in tumour invasion and inflammation. A series of N-benzoylindazoles was synthesized and evaluated for their ability to inhibit HNE. We found that this scaffold is appropriate for HNE inhibitors and that the benzoyl fragment at position 1 is essential for activity. The most active compounds inhibited HNE activity with IC 50 values in the submicromolar range. Furthermore, docking studies indicated that the geometry of an inhibitor within the binding site and energetics of Michaelis complex formation were key factors influencing the inhibitor's biological activity. Thus, N-benzoylindazole derivatives and their analogs represent novel structural templates that can be utilized for further development of efficacious HNE inhibitors.
A number of [(3-chlorophenyl)piperazinylpropyl]pyridazinones and the corresponding isoxazolopyridazinones, showing the arylpiperazinyl substructure present in very potent antinociceptive agents reported in the literature, were synthesized and tested for their analgesic activity. The investigated compounds showed antinociceptive properties in the mouse hot-plate test (thermal nociceptive stimulus) after systemic administration with an efficacy similar to that exerted by morphine. The increase of the pain threshold induced by the compounds labeled 5a, 7, 8, and 11 was prevented by reserpine, suggesting the involvement of the noradrenergic and/or serotoninergic system in their mechanism of action. Among them, 7 and 11 showed the highest analgesic potency and efficacy together with a good ratio (133 and 200, respectively) of the minimal nontoxic dose (MNTD) to the minimal analgesic dose (MAD). Furthermore, they were also active after icv administration and in the presence of a chemical, painful stimulus (abdominal constriction test).
Formyl peptide receptors (FPRs) play an essential role in the regulation of endogenous inflammation and immunity. In the present studies, a large series of pyridazin-3(2H)-one derivatives bearing an arylacetamide chain at position 2 was synthesized and tested for FPR agonist activity. The pyridazin-3(2H)-one ring was confirmed to be an appropriate scaffold to support FPR agonist activity, and its modification at the 4 and 6 positions led to the identification of additional active agonists, which induced intracellular Ca2+ flux in HL-60 cells transfected with either FPR1, FPR2, or FPR3. Seven formyl peptide receptor 1 (FPR1)-specific and several mixed FPR1/FPR2 dual agonists were identified with low micromolar EC50 values. Furthermore, these agonists also activated human neutrophils, inducing intracellular Ca2+ flux and chemotaxis. Finally, molecular docking studies indicated that the most potent pyridazin-3(2H)-ones overlapped in their best docking poses with fMLF and WKYMVM peptides in the FPR1 and FPR2 ligand binding sites, respectively. Thus, pyridazinone-based compounds represent potential lead compounds for further development of selective and/or potent FPR agonists.
A series of chiral pyridazin-3(2H)-ones was synthesized, separated as pure enantiomers, and evaluated for N-formyl peptide receptor (FPR) agonist activity. Characterization of the purified enantiomers using combined chiral HPLC and chiroptical studies (circular dichroism, allowed unambiguous assignment of the absolute configuration for each pair of enantiomers). Evaluation of the ability of racemic mixtures and purified enantiomers to stimulate intracellular Ca2+ flux in FPR-transfected HL-60 cells and human neutrophils and to induce β-arrestin recruitment in FPR-transfected CHO-K1 cells showed that many enantiomers were potent agonists, inducing responses in the sub-micromolar to nanomolar range. Furthermore, FPRs exhibited enantiomer selectivity, generally preferring the R-(−)-forms over the S-(+)-enantiomers. Finally, we found that elongation of the carbon chain in the chiral center of the active compounds generally increased biological activity. Thus, these studies provide important new information regarding molecular features involved in FPR ligand preference and report the identification of a novel series of FPR agonists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.