Table olives represent one important fermented product in Europe and, in the world, their demand is constantly increasing. At the present time, no systems are available to control black table olives spontaneous fermentation by the Greek method. During this study, a new protocol for the production of black table olives belonging to two Italian (Cellina di Nardò and Leccino) and two Greek (Kalamàta and Conservolea) cultivars has been developed: for each table olive cultivar, starter-driven fermentations were performed inoculating, firstly, one selected autochthonous yeast starter and, subsequently, one selected autochthonous LAB starter. All starters formulation were able to dominate fermentation process. The olive fermentation was monitored using specific chemical descriptors able to identify a first stage (30 days) mainly characterized by aldehydes; a second period (60 days) mainly characterized by higher alcohols, styrene and terpenes; a third fermentation stage represented by acetate esters, esters and acids. A significant decrease of fermentation time (from 8 to 12 months to a maximum of 3 months) and an significant improvement in organoleptic characteristics of the final product were obtained. This study, for the first time, describes the employment of selected autochthonous microbial resources optimized to mimic the microbial evolution already recorded during spontaneous fermentations.
The olive is a fruit tree species with a century-old history of cultivation in theMediterranean basin. In Apulia (Southern Italy), the olive is of main social, cultural and economicimportance, and represents a hallmark of the rural landscape. However, olive cultivation in thisregion is threatened by the recent spread of the olive quick decline syndrome (OQDS) disease, thusthere is an urgent need to explore biodiversity and search for genetic sources of resistance. Herein,a genetic variation in Apulian olive germplasm was explored, as a first step to identify genotypeswith enhanced bio-agronomic traits, including resistance to OQDS. A preselected set of nuclearmicrosatellite markers allowed the acquisition of genotypic profiles, and to define geneticrelationships between Apulian germplasm and widespread cultivars. The analysis highlighted thebroad genetic variation in Apulian accessions and the presence of different unique genetic profiles.The results of this study lay a foundation for the organization of new breeding programs for olivegenetic improvement.
Xylella fastidiosa is a Gram‐negative, xylem‐limited, bacterium which is responsible, in Italy, for the olive quick decline syndrome (OQDS). The disease is caused by the subspecies pauca and emerged a few years ago in the Apulia province of Lecce, in the Salento peninsula, on Olea europaea plants. X. fastidiosa can infect different plant species and is well known in California as the causal agent of Pierce's disease on grape. Infections of susceptible hosts with X. fastidiosa are known to result in xylem vessel occlusions, water movement impairment, and accordingly to induce the typical desiccation symptoms. In this study, we investigated xylem vessel occlusions in healthy and naturally infected O. europaea plants grown in open field by analysing three olive cultivars widespread in the region that show different degree of susceptibility to the disease: the susceptible cultivars “Ogliarola salentina” and “Cellina di Nardò,” and the tolerant cultivar “Leccino.” Our results show that occlusions were caused by tyloses and gums/pectin gels, and not by bacterial cell aggregates. Our data also indicate that occlusions are not responsible for the symptomatology of the OQDS and, as observed in Leccino plants, they are not a marker of tolerance/resistance to the disease.
There is a clinical relevance for recognizing such families, and offering available therapies since childhood is stressed. Some genotype-phenotype correlations between PAX9 mutations and dental anomalies can be drawn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.