Human and rat primary sub-cultured vascular smooth muscle cells (VSMCs) showed clear expression of the death receptors TRAIL-R1 and TRAIL-R2; however, recombinant soluble TRAIL did not induce cell death when added to these cells. TRAIL tended to protect rat VSMCs from apoptosis induced either by inflammatory cytokines tumor necrosis factor-alpha + interleukin-1beta + interferon-gamma or by prolonged serum withdrawal, and promoted a significant increase in VSMC proliferation and migration. Of note, all the biological effects induced by TRAIL were significantly inhibited by pharmacological inhibitors of the ERK pathway. Western blot analysis consistently showed that TRAIL induced a significant activation of ERK1/2, and a much weaker phosphorylation of Akt, while it did not affect the p38/MAPK pathway. Taken together, these data strengthen the notion that the TRAIL/TRAIL-R system likely plays a role in the biology of the vascular system by affecting the survival, migration and proliferation of VSMCs.
Apoptosis is a form of active cell death, genetically encoded, that plays a key role during several physiological and pathological conditions. During the apoptotic process, striking morphological and biochemical changes take place in the cell nucleus. However, the molecular mechanisms underlying these changes have escaped clarification for many years. Recently, attention has been devoted to identifying the modifications that occur during apoptosis in the nuclear matrix, a mainly proteinaceous framework structure which is thought to play a fundamental role in organizing nuclear structure and function. In this review, we focus our attention on the biochemical and morphological changes detected in the nuclear matrix during the apoptotic process. Particular emphasis will be placed on the proteolysis that some nuclear matrix proteins undergo early during the apoptotic process, as well as on the detachment of DNA loops from the matrix by the action of endonuclease(s). Future research in this field may provide important information about the principal mechanisms that cause nuclear destruction in apoptotic cells.
To potentiate the response of acute myeloid leukemia (AML) to TRAIL cytotoxicity, we have adopted a strategy of combining nutlin-3, a potent non-genotoxic activator of the p53 pathway, with recombinant TRAIL. The rationale for using such a combination was that deletions and/or mutations of the p53 gene occur in only 5-10% of AML and that TRAIL and nutlin-3 activate the extrinsic and intrinsic pathways of apoptosis, respectively. TRAIL induced a rapid increase of apoptosis when added to OCI M4-type and MOLM M5-type AML cells, carrying a wild-type p53, as well as to NB4 M3-type AML, carrying a mutated p53. On the other hand, the small molecule activator of the p53 pathway nutlin-3 induced p53 accumulation, cell cycle arrest and a slow progressive increase of apoptosis in OCI and MOLM but not in NB4. Of note, nutlin-3 up-regulated the surface expression of TRAIL-R2 and synergized with TRAIL in inducing apoptosis in OCI and MOLM as well as in primary M4-type and M5-type AML blasts, but not in NB4 cells. Moreover, while nutlin-3 up-regulated the expression of cyclin dependent kinase inhibitor p21, a p53-target gene mediating cell cycle block and showing anti-apoptotic activity, the simultaneous addition of TRAIL plus nutlin-3 induced the caspase-dependent cleavage of p21. The relevance of p21 down-regulation for sensitizing AML cells to apoptosis was underscored in knocking-down experiments with small interfering RNAs. Our data suggest that the combined treatment of nutlin-3 plus TRAIL might offer a novel therapeutic strategy for AML.
Background/Aims: Since elevated plasma levels of osteoprotegerin (OPG) represent a risk factor for death and heart failure in patients affected by diabetes mellitus and coronary artery disease, this study aimed to elucidate potential roles of OPG in the pathogenesis of atherosclerosis. Methods and Results: Recombinant human full-length OPG, used at concentrations comparable to the elevated levels found in the serum of diabetic patients, significantly increased the proliferation rate of rodent vascular smooth muscle cells (VSMC). To mimic the moderate chronic elevation of OPG observed in diabetic patients, low doses (1 µg/mouse) of full-length human OPG were injected intraperitoneally every 3 weeks in diabetic apolipoprotein E (apoE)-null mice. The group of animals treated for 12 weeks with recombinant OPG showed a small increase in the total aortic plaque area at necropsy in comparison to vehicle-treated animals. Importantly, while no differences in the amount of interstitial collagen or the degree of macrophage infiltration were observed between OPG-treated and vehicle-treated apoE-null diabetic animals, a significant increase in the number of α-actin-positive smooth muscle cells was observed in the plaques of OPG-treated mice. Conclusions: Our data suggest that OPG promotes VSMC proliferation and might be directly involved in pathogenetic aspects of atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.