Filtered lakewater samples, mainly collected in the province of Torino (Piedmont, NW Italy) were characterised from a spectrophotometric point of view. Spectral data were then used for the direct determination of nitrate by three-wavelength photometry, which should account for the spectral interference by dissolved organic matter (DOM), and the results compared with nitrate quantification by ion chromatography. The spectrophotometric method proved very suitable for nitrate measurement, with unity slope (micro +/- sigma = 0.99 +/- 0.03) of the correlation plot (spectral vs. ion chromatography data) up to 0.1 mM nitrate, and with r2 = 0.97 for 26 data points. Lakewater spectra were also used for the characterisation of DOM by means of the specific absorption at 285 and 254 nm (absorbance vs. NPOC, the latter to quantify the DOM amount), and the E2/E3 and E3/E4 indexes. The latter two make only use of radiation absorption data (250 vs. 365 and 300 vs. 400 nm). It could be concluded that lakewater DOM is mainly composed of autochthonous material (biologically produced aliphatic compounds and only a minor fraction of aromatic groups), with generally low molecular weight and degree of aromaticity. Some exceptions could be found in high-mountain lakes, but it should also be considered that NPOC measurement cannot be avoided if DOM origin is to be studied. From the absorption spectrum alone it is possible to get indication on the aromaticity degree of radiation-absorbing DOM, but most of the autochthonous DOM would escape spectrophotometric characterisation.
A model was developed to predict the steady-state [*OH] in the surface layer of natural waters as a function of nitrate, inorganic carbon (IC) and dissolved organic matter (DOM). The parameter values were studied in the range detected in shallow high-mountain lakes, to which the model results are most relevant. Calculations indicate that [*OH] increases with increasing nitrate and decreasing IC, and conditions are also identified where [*OH] is directly proportional, inversely proportional or independent of DOM. Based on the model results it is possible to predict the half-life time, due to reaction with *OH, of given dissolved compounds, including organic pollutants, from the water composition data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.