The TOTEM experiment has made a precise measurement of the elastic proton-proton differential cross-section at the centre-of-mass energy √ s = 8 TeV based on a high-statistics data sample obtained with the β * = 90 m optics. Both the statistical and systematic uncertainties remain below 1 %, except for the t-independent contribution from the overall normalisation. This unprecedented precision allows to exclude a purely exponential differential cross-section in the range of fourmomentum transfer squared 0.027 < |t| < 0.2 GeV 2 with a significance greater than 7 σ. Two extended parametrisations, with quadratic and cubic polynomials in the exponent, are shown to be well compatible with the data. Using them for the differential cross-section extrapolation to t = 0, and further applying the optical theorem, yields total cross-section estimates of (101.5 ± 2.1) mb and (101.9 ± 2.1) mb, respectively, in agreement with previous TOTEM measurements.This article is dedicated to the memory of Prof. E. Lippmaa and Prof. M. Lo Vetere who passed away recently
This paper describes the design and the performance of the timing detector developed by the TOTEM Collaboration for the Roman Pots (RPs) to measure the Time-Of-Flight (TOF) of the protons produced in central diffractive interactions at the LHC. The measurement of the TOF of the protons allows the determination of the longitudinal position of the proton interaction vertex and its association with one of the vertices reconstructed by the CMS detectors. The TOF detector is based on single crystal Chemical Vapor Deposition (scCVD) diamond plates and is designed to measure the protons TOF with about 50 ps time precision. This upgrade to the TOTEM apparatus will be used in the LHC run 2 and will tag the central diffractive events up to an interaction pileup of about 1. A dedicated fast and low noise electronics for the signal amplification has been developed. The digitization of the diamond signal is performed by sampling the waveform. After introducing the physics studies that will most profit from the addition of these new detectors, we discuss in detail the optimization and the performance of the first TOF detector installed in the LHC in November 2015.
Fibre Bragg grating (FBG) strain sensors are not only a very well-established research field, but they are also acquiring a bigger market share due to their sensitivity and low costs. In this paper we review FBG strain sensors with high focus on the underlying physical principles, the interrogation, and the read-out techniques. Particular emphasis is given to recent advances in highly-performing, single head FBG, a category FBG strain sensors belong to. Different sensing schemes are described, including FBG strain sensors based on mode splitting. Their operation principle and performance are reported and compared with the conventional architectures. In conclusion, some advanced applications and key sectors the global fibre-optic strain sensors market are envisaged, as well as the main market players acting in this field.
A theoretical investigation of silicon-on-insulator nanometer slot waveguides for highly sensitive and compact chemical and biochemical integrated optical sensing is proposed. Slot guiding structures enabling high optical confinement in a low-index very small region are demonstrated to be very sensitive to either cover medium refractive index change or deposited receptor layer thickness increase. Modal and confinement properties of slot waveguides have been investigated, considering also the influence of fabrication tolerances. Waveguide sensitivity has been calculated and compared with that exhibited by other silicon nanometer guiding structures, such as rib or wire waveguides, or with experimental values in literature.
This paper is an overview of current gyroscopes and their roles based on their applications. The considered gyroscopes include mechanical gyroscopes and optical gyroscopes at macro- and micro-scale. Particularly, gyroscope technologies commercially available, such as Mechanical Gyroscopes, silicon MEMS Gyroscopes, Ring Laser Gyroscopes (RLGs) and Fiber-Optic Gyroscopes (FOGs), are discussed. The main features of these gyroscopes and their technologies are linked to their performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.