Chimeric antigen receptor (CAR)‐T cell therapy has achieved considerable success in treating B‐cell hematologic malignancies. However, the challenges of extending CAR‐T therapy to other tumor types, particularly solid tumors, remain appreciable. There are substantial variabilities in CAR‐T cellular kinetics across CAR‐designs, CAR‐T products, dosing regimens, patient responses, disease types, tumor burdens, and lymphodepletion conditions. As a “living drug,” CAR‐T cellular kinetics typically exhibit four distinct phases: distribution, expansion, contraction, and persistence. The cellular kinetics of CAR‐T may correlate with patient responses, but which factors determine CAR‐T cellular kinetics remain poorly defined. Herein, we developed a cellular kinetic model to retrospectively characterize CAR‐T kinetics in 217 patients from 7 trials and compared CAR‐T kinetics across response status, patient populations, and tumor types. Based on our analysis results, CAR‐T cells exhibited a significantly higher cell proliferation rate and capacity but a lower contraction rate in patients who responded to treatment. CAR‐T cells proliferate to a higher degree in hematologic malignancies than in solid tumors. Within the assessed dose ranges (107‒109 cells), CAR‐T doses were weakly correlated with CAR‐T cellular kinetics and patient response status. In conclusion, the developed CAR‐T cellular kinetic model adequately characterized the multiphasic CAR‐T cellular kinetics and supported systematic evaluations of the potential influencing factors, which can have significant implications for the development of more effective CAR‐T therapies.
Circadian rhythms are ubiquitous phenomena that recur daily in a self-sustaining, entrainable, and oscillatory manner, and orchestrate a wide range of molecular, physiological, and behavioral processes. Circadian clocks are comprised of a hierarchical network of central and peripheral clocks that generate, sustain, and synchronize the circadian rhythms. The functioning of the peripheral clock is regulated by signals from autonomic innervation (from the central clock), endocrine networks, feeding, and other external cues. The critical role played by circadian rhythms in maintaining both systemic and tissue-level homeostasis is well established, and disruption of the rhythm has direct consequence for human health, disorders, and diseases. Circadian oscillations in both pharmacokinetics and pharmacodynamic processes are known to affect efficacy and toxicity of several therapeutic agents. A variety of modeling approaches ranging from empirical to more complex systems modeling approaches have been applied to characterize circadian biology and its influence on drug actions, optimize time of dosing, and identify opportunities for pharmacological modulation of the clock mechanisms and their downstream effects. In this review, we summarize current understanding of circadian rhythms and its influence on physiology, pharmacology, and therapeutic interventions, and discuss the role of chronopharmacometrics in gaining new insights into circadian rhythms and its applications in chronopharmacology.
The plasma and tissue binding properties of two corticosteroids, dexamethasone (DEX) and methylprednisolone (MPL), were assessed in the rat in anticipation of developing physiologically based pharmacokinetic and pharmacokinetic/ pharmacodynamic models. The tissue-to-plasma partition coefficients (K P) of DEX and MPL were measured in liver, muscle, and lung in vivo after steady-state infusion and bolus injection in rats. Since K P is often governed by reversible binding to macromolecules in blood and tissue, an attempt was made to assess K P values of DEX and MPL by in vitro binding studies using rat tissue homogenates and to compare these estimates to those obtained from in vivo kinetics after dosing. The K P values of both steroids were also calculated in rat tissues using mechanistic tissue composition-based equations. The plasma binding of DEX and MPL was linear with moderate binding (60.5% and 82.5%) in male and female rats. In vivo estimates of steroid uptake appeared linear across the tested concentrations and K P was highest in liver and lowest in muscle for both steroids. Assessment of hepatic binding of MPL in vitro was severely affected by drug loss at 37°C in male liver homogenates, whereas DEX was stable in both male and female liver homogenates. With the exception of MPL in liver, in vitro-derived K P estimates reasonably agreed with in vivo values. The mechanistic equations modestly underpredicted K P for both drugs. Tissue metabolism, saturable tissue binding, and active uptake are possible factors that can complicate assessments of in vivo tissue binding of steroids when using tissue homogenates. SIGNIFICANCE STATEMENT Assuming the free hormone hypothesis, the ratio of the unbound drug fraction in plasma and in tissues defines the tissue-toplasma partition coefficient (K P), an important parameter in physiologically based pharmacokinetic modeling that determines total drug concentrations within tissues and the steadystate volume of distribution. This study assessed the plasma and tissue binding properties of the synthetic corticosteroids, dexamethasone and methylprednisolone, in rats using ultrafiltration and tissue homogenate techniques. In vitro-in vivo and in silicoin vivo extrapolation of K P was assessed for both drugs in liver, muscle, and lung. Although the extrapolation was fairly successful across the tissues, in vitro homogenate studies severely underpredicted the K P of methylprednisolone in liver, partly attributable to the extensive hepatic metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.