A typical analytical lifecycle in data science projects starts with the process of data generation and collection, continues with data preparation and preprocessing and heads towards project specific analytics, visualizations and presentations. In order to ensure high quality trusted analytics, every relevant step of the data-model-result linkage needs to meet certain quality standards that furthermore should be certified by trusted quality gate mechanisms.We propose “blockchain-backed analytics”, a scalable and easy-to-use generic approach to introduce quality gates to data science projects, backed by the immutable records of a blockchain. For that reason, data, models and results are stored as cryptographically hashed fingerprints with mutually linked transactions in a public blockchain database.This approach enables stakeholders of data science projects to track and trace the linkage of data, applied models and modeling results without the need of trust validation of escrow systems or any other third party.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.