SummaryThe genome of the hemibiotrophic anthracnose fungus, Colletotrichum higginsianum, encodes a large repertoire of candidate-secreted effectors containing LysM domains, but the role of such proteins in the pathogenicity of any Colletotrichum species is unknown.Here, we characterized the function of two effectors, ChELP1 and ChELP2, which are transcriptionally activated during the initial intracellular biotrophic phase of infection.Using immunocytochemistry, we found that ChELP2 is concentrated on the surface of bulbous biotrophic hyphae at the interface with living host cells but is absent from filamentous necrotrophic hyphae. We show that recombinant ChELP1 and ChELP2 bind chitin and chitin oligomers in vitro with high affinity and specificity and that both proteins suppress the chitintriggered activation of two immune-related plant mitogen-activated protein kinases in the host Arabidopsis. Using RNAi-mediated gene silencing, we found that ChELP1 and ChELP2 are essential for fungal virulence and appressorium-mediated penetration of both Arabidopsis epidermal cells and cellophane membranes in vitro.The findings suggest a dual role for these LysM proteins as effectors for suppressing chitintriggered immunity and as proteins required for appressorium function.
In a chemical screen we identified thaxtomin A (TXA), a phytotoxin from plant pathogenic Streptomyces scabies, as a selective and potent activator of FLAVIN-DEPENDENT MONOOXYGENASE1 (FMO1) expression in Arabidopsis (Arabidopsis thaliana). TXA induction of FMO1 was unrelated to the production of reactive oxygen species (ROS), plant cell death or its known inhibition of cellulose synthesis. TXA-stimulated FMO1 expression was strictly dependent on ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and PHYTOALEXIN DEFICIENT4 (PAD4) but independent of salicylic acid (SA) synthesis via ISOCHORISMATE SYNTHASE1 (ICS1). TXA induced the expression of several EDS1/PAD4-regulated genes, including EDS1, PAD4, SENESCENCE ASSOCIATED GENE101 (SAG101), ICS1, AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) and PATHOGENESIS-RELATED PROTEIN1 (PR1), and accumulation of SA. Notably, enhanced ALD1 expression did not result in accumulation of the product pipecolic acid (PIP), which promotes FMO1 expression during biologically induced systemic acquired resistance. TXA treatment preferentially stimulated expression of PAD4 compared with EDS1, which was mirrored by PAD4 protein accumulation, suggesting that TXA leads to increased PAD4 availability to form EDS1-PAD4 signaling complexes. Also, TXA treatment of Arabidopsis plants led to enhanced disease resistance to bacterial and oomycete infection, which was dependent on EDS1 and PAD4, as well as on FMO1 and ICS1. Collectively, the data identify TXA as a potentially useful chemical tool to conditionally activate and interrogate EDS1- and PAD4-controlled pathways in plant immunity.
The use of biologically active small molecules to perturb biological functions holds enormous potential for investigating complex signaling networks. However, in contrast to animal systems, the search for and application of chemical tools for basic discovery in the plant sciences, generally referred to as “chemical genetics,” has only recently gained momentum. In addition to cultured cells, the well-characterized, small-sized model plant Arabidopsis thaliana is suitable for cultivation in microplates, which allows employing diverse cell- or phenotype-based chemical screens. In such screens, a chemical's bioactivity is typically assessed either through scoring its impact on morphological traits or quantifying molecular attributes such as enzyme or reporter activities. Here, we describe a facile forward chemical screening methodology for intact Arabidopsis seedlings harboring the β-glucuronidase (GUS) reporter by directly quantifying GUS activity in situ with 4-methylumbelliferyl-β-D-glucuronide (4-MUG) as substrate. The quantitative nature of this screening assay has an obvious advantage over the also convenient histochemical GUS staining method, as it allows application of statistical procedures and unbiased hit selection based on threshold values as well as distinction between compounds with strong or weak bioactivity. At the same time, the in situ bioassay is very convenient requiring less effort and time for sample handling in comparison to the conventional quantitative in vitro GUS assay using 4-MUG, as validated with several Arabidopsis lines harboring different GUS reporter constructs. To demonstrate that the developed assays is particularly suitable for large-scale screening projects, we performed a pilot screen for chemical activators or inhibitors of salicylic acid-mediated defense signaling using the Arabidopsis PR1p::GUS line. Importantly, the screening methodology provided here can be adopted for any inducible GUS reporter line.
In plants, low-dose of exogenous bacterial cyclic lipopeptides (CLPs) trigger transient membrane changes leading to activation of early and late defence responses. Here, a forward chemical genetics approach identifies colistin sulphate ( CS ) CLP as a novel plant defence inducer. CS uniquely triggers activation of the PATHOGENESIS-RELATED 1 ( PR1 ) gene and resistance against Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) in Arabidopsis thaliana (Arabidopsis) independently of the PR1 classical inducer, salicylic acid (SA) and the key SA-signalling protein, NON-EXPRESSOR OF PR1 (NPR1). Low bioactive concentration of CS does not trigger activation of early defence markers such as reactive oxygen species (ROS) and mitogen activated protein kinase (MAPK). However, it strongly suppresses primary root length elongation. Structure activity relationship (SAR) assays and mode-of-action (MoA) studies show the acyl chain and activation of a ∼46 kDa p38-like kinase pathway to be crucial for CS’ bioactivity. Selective pharmacological inhibition of the active p38-like kinase pathway by SB203580 reverses CS’ effects on PR1 activation and root length suppression. Our results with CS as a chemical probe highlight the existence of a novel SA- and NPR1-independent branch of PR1 activation functioning via a membrane-sensitive p38-like kinase pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.