Molecular phylogenetic studies of homologous sequences of nucleotides often assume that the underlying evolutionary process was globally stationary, reversible, and homogeneous (SRH), and that a model of evolution with one or more site-specific and time-reversible rate matrices (e.g., the GTR rate matrix) is enough to accurately model the evolution of data over the whole tree. However, an increasing body of data suggests that evolution under these conditions is an exception, rather than the norm. To address this issue, several non-SRH models of molecular evolution have been proposed, but they either ignore heterogeneity in the substitution process across sites (HAS) or assume it can be modeled accurately using the distribution. As an alternative to these models of evolution, we introduce a family of mixture models that approximate HAS without the assumption of an underlying predefined statistical distribution. This family of mixture models is combined with non-SRH models of evolution that account for heterogeneity in the substitution process across lineages (HAL). We also present two algorithms for searching model space and identifying an optimal model of evolution that is less likely to over- or underparameterize the data. The performance of the two new algorithms was evaluated using alignments of nucleotides with 10 000 sites simulated under complex non-SRH conditions on a 25-tipped tree. The algorithms were found to be very successful, identifying the correct HAL model with a 75% success rate (the average success rate for assigning rate matrices to the tree's 48 edges was 99.25%) and, for the correct HAL model, identifying the correct HAS model with a 98% success rate. Finally, parameter estimates obtained under the correct HAL-HAS model were found to be accurate and precise. The merits of our new algorithms were illustrated with an analysis of 42 337 second codon sites extracted from a concatenation of 106 alignments of orthologous genes encoded by the nuclear genomes of Saccharomyces cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. castellii, S. kluyveri, S. bayanus, and Candida albicans. Our results show that second codon sites in the ancestral genome of these species contained 49.1% invariable sites, 39.6% variable sites belonging to one rate category (V1), and 11.3% variable sites belonging to a second rate category (V2). The ancestral nucleotide content was found to differ markedly across these three sets of sites, and the evolutionary processes operating at the variable sites were found to be non-SRH and best modeled by a combination of eight edge-specific rate matrices (four for V1 and four for V2). The number of substitutions per site at the variable sites also differed markedly, with sites belonging to V1 evolving slower than those belonging to V2 along the lineages separating the seven species of Saccharomyces. Finally, sites belonging to V1 appeared to have ceased evolving along the lineages separating S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, and S. bayanus, implying that ...
BackgroundAcute myeloid leukaemia (AML) is characterised by the halt in maturation of myeloid progenitor cells, combined with uncontrolled proliferation and abnormal survival, leading to the accumulation of immature blasts. In many subtypes of AML the underlying causative genetic insults are not fully described. MicroRNAs are known to be dysregulated during oncogenesis. Overexpression of miR-155 is associated with some cancers, including haematological malignancies, and it has been postulated that miR-155 has an oncogenic role. This study investigated the effects of modulating miR-155 expression in human AML cells, and its mechanism of action.ResultsAnalysis of miR-155 expression patterns in AML patients found that Fms-like tyrosine kinase 3 (FLT3)-wildtype AML has the same expression level as normal bone marrow, with increased expression restricted to AML with the FLT3-ITD mutation. Induction of apoptosis by cytarabine arabinoside or myelomonocytic differentiation by 1,23-dihydroxyvitaminD3 in FLT3-wildtype AML cells led to upregulated miR-155 expression. Knockdown of miR-155 by locked nucleic acid antisense oligonucleotides in the FLT3-wildtype AML cells conferred resistance to cytarabine arabinoside induced apoptosis and suppressed the ability of cells to differentiate.Ectopic expression of miR-155 in FLT3-wildtype AML cells led to a significant gain of myelomonocytic markers (CD11b, CD14 and CD15), increase in apoptosis (AnnexinV binding), decrease in cell growth and clonogenic capacity.In silico target prediction identified a number of putative miR-155 target genes, and the expression changes of key transcription regulators of myeloid differentiation and apoptosis (MEIS1, GF1, cMYC, JARID2, cJUN, FOS, CTNNB1 and TRIB2) were confirmed by PCR. Assessment of expression of apoptosis-related proteins demonstrated a marked increase in cleaved caspase-3 expression confirming activation of the apoptosis cascade.ConclusionsThis study provides evidence for an anti-leukaemic role for miR-155 in human FLT3-wildtype AML, by inducing cell apoptosis and myelomonocytic differentiation, which is in contrast to its previously hypothesized role as an oncogene. This highlights the complexity of gene regulation by microRNAs that may have tumour repressor or oncogenic effects depending on disease context or tissue type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.