Selecting a suitable oviposition site is crucial to the fitness of female insects because it determines the successful development of their offspring. During the oviposition process, an insect must use cues from the external environment to make an appropriate choice of where to lay eggs. Generalist insects can detect and react to a plethora of cues, but are under selection pressure to adopt the most reliable ones to override noise and increase efficiency in finding hosts. The oriental fruit fly, Bactrocera dorsalis (Hendel), is a generalist that utilizes a multitude of fruits as oviposition sites. However, the identity and nature of oviposition stimulants for B. dorsalis is not well known. Recently, we identified a volatile compound γ-octalactone that elicits an innate oviposition response in B. dorsalis. We screened 21 EAD-active volatiles, identified from mango, for their oviposition stimulant activity. 1-Octen-3-ol, ethyl tiglate, and benzothiazole instigated oviposition in gravid B. dorsalis females. Flies deposited most of their eggs into pulp discs with oviposition-stimulants, and only a small fraction of eggs were laid into control discs. In a binary choice oviposition assay, 95.1, 93.7, and 65.6 % of eggs were laid in discs treated with 1-octen-3-ol, ethyl tiglate, and benzothiazole, respectively. Single plate two-choice assays proved that oviposition-stimulants were crucial in oviposition site selection by gravid female B. dorsalis. In simulated semi-natural assays, gravid B. dorsalis females accurately differentiated between fruits with and without 1-octen-3-ol, ethyl tiglate, and γ-octalactone by laying more eggs on the treated fruit. However, benzothiazole did not elicit an increase in oviposition when presented in this context. Our results suggest that the identified oviposition-stimulants are 'key' compounds, which the flies associate with suitable oviposition sites.
Commensal bacteria influence many aspects of an organism's behaviour. However, studies on the influence of commensal bacteria in insect mate-selection are scarce. Here, we present empirical evidence that commensal bacteria mediate mate-selection in the Oriental fruit fly, Bactrocera dorsalis. Male flies were attracted to female flies, but this attraction was abolished when female flies were fed with antibiotics, suggesting the role of the fly's microbiota in mediating mate-selection. We show that male flies were attracted to and ejaculated more sperm into females harbouring the microbiota. Using culturing and 16S rDNA sequencing, we isolated and identified different commensal bacteria, with Klebsiella oxytoca being the most abundant bacterial species. This preliminary study will enhance our understanding of the influence of commensal bacteria on mate-selection behaviour of B. dorsalis and may find use in devising control operations against this devastating pest.
BackgroundSemiochemical is a generic term used for a chemical substance that influences the behaviour of an organism. It is a common term used in the field of chemical ecology to encompass pheromones, allomones, kairomones, attractants and repellents. Insects have mastered the art of using semiochemicals as communication signals and rely on them to find mates, host or habitat. This dependency of insects on semiochemicals has allowed chemical ecologists to develop environment friendly pest management strategies. However, discovering semiochemicals is a laborious process that involves a plethora of behavioural and analytical techniques, making it expansively time consuming. Recently, reverse chemical ecology approach using odorant binding proteins (OBPs) as target for elucidating behaviourally active compounds is gaining eminence. In this scenario, we describe a “computational reverse chemical ecology” approach for rapid screening of potential semiochemicals.ResultsWe illustrate the high prediction accuracy of our computational method. We screened 25 semiochemicals for their binding potential to a GOBP of B. dorsalis using molecular docking (in silico) and molecular dynamics. Parallely, compounds were subjected to fluorescent quenching assays (Experimental). The correlation between in silico and experimental data were significant (r2 = 0.9408; P < 0.0001). Further, predicted compounds were subjected to behavioral bioassays and were found to be highly attractive to insects.ConclusionsThe present study provides a unique methodology for rapid screening and predicting behaviorally active semiochemicals. This methodology may be developed as a viable approach for prospecting active semiochemicals for pest control, which otherwise is a laborious process.
Innate recognition templates (IRTs) in insects are developed through many years of evolution. Here we investigated olfactory cues mediating oviposition behavior in the oriental fruit fly, Bactrocera dorsalis, and their role in triggering an IRT for oviposition site recognition. Behavioral assays with electrophysiologically active compounds from a preferred host, mango, revealed that one of the volatiles tested, γ-octalactone, had a powerful effect in eliciting oviposition by gravid B. dorsalis females. Electrophysiological responses were obtained and flies clearly differentiated between treated and untreated substrates over a wide range of concentrations of γ-octalactone. It triggered an innate response in flies, overriding inputs from other modalities required for oviposition site evaluation. A complex blend of mango volatiles not containing γ-octalactone elicited low levels of oviposition, whereas γ-octalactone alone elicited more oviposition response. Naïve flies with different rearing histories showed similar responses to γ-octalactone. Taken together, these results indicate that oviposition site selection in B. dorsalis is mediated through an IRT tuned to γ-octalactone. Our study provides empirical data on a cue underpinning innate behavior and may also find use in control operations against this invasive horticultural pest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.