Many knots and links in S 3 can be drawn as gluing of three manifolds with one or more four-punctured S 2 boundaries. We call these knot diagrams as double fat graphs whose invariants involve only the knowledge of the fusion and the braiding matrices of four -strand braids. Incorporating the properties of four-point conformal blocks in WZNW models, we conjecture colored HOMFLY polynomials for these double fat graphs where the color can be rectangular or non-rectangular representation. With the recent work of Gu-Jockers, the fusion matrices for the non-rectangular [21] representation, the first which involves multiplicity is known. We verify our conjecture by comparing with the [21] colored HOMFLY of many knots, obtained as closure of three braids. The conjectured form is computationally very effective leading to writing [21]-colored HOMFLY polynomials for many pretzel type knots and non-pretzel type knots. In particular, we find class of pretzel mutants which are distinguished and another class of mutants which cannot be distinguished by [21] representation. The difference between the [21]-colored HOMFLY of two mutants seems to have a general form, with A-dependence completely defined by the old conjecture due to Morton and Cromwell. In particular, we check it for an entire multi-parametric family of mutant knots evaluated using evolution method.
We study the entanglement for a state on linked torus boundaries in 3d ChernSimons theory with a generic gauge group and present the asymptotic bounds of Rényi entropy at two different limits: (i) large Chern-Simons coupling k, and (ii) large rank r of the gauge group. These results show that the Rényi entropies cannot diverge faster than ln k and ln r, respectively. We focus on torus links T (2, 2n) with topological linking number n. The Rényi entropy for these links shows a periodic structure in n and vanishes whenever n = 0 (mod p), where the integer p is a function of coupling k and rank r. We highlight that the refined Chern-Simons link invariants can remove such a periodic structure in n.
Arborescent knots are the ones which can be represented in terms of double fat graphs or equivalently as tree Feynman diagrams. This is the class of knots for which the present knowledge is enough for lifting topological description to the level of effective analytical formulas. The paper describes the origin and structure of the new tables of colored knot polynomials, which will be posted at the dedicated site [1]. Even if formal expressions are known in terms of modular transformation matrices, the computation in finite time requires additional ideas. We use the "family" approach, suggested in [2], and apply it to arborescent knots in Rolfsen table by developing a Feynman diagram technique, associated with an auxiliary matrix model field theory. Gauge invariance in this theory helps to provide meaning to Racah matrices in the case of nontrivial multiplicities and explains the need for peculiar sign prescriptions in the calculation of [21]-colored HOMFLY polynomials.
Tests of the integrality properties of a scalar operator in topological strings on a resolved conifold background or orientifold of conifold backgrounds have been performed for arborescent knots and some non-arborescent knots. The recent results on polynomials for those knots colored by SU(N ) and SO(N ) adjoint representations [1] are useful to verify Marino's integrality conjecture up to two boxes in the Young diagram. In this paper, we review the salient aspects of the integrality properties and tabulate explicitly for an arborescent knot and a link. In our knotebook website, we have put these results for over 100 prime knots available in Rolfsen table and some links. The first application of the obtained results, an observation of the Gaussian distribution of the LMOV invariants is also reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.