Salmonella species are among the world’s most prevalent pathogens. Because the cell wall interfaces with the host, we designed a lipidomics approach to reveal pathogen-specific cell wall compounds. Among the molecules differentially expressed between Salmonella Paratyphi and S. Typhi, we focused on lipids that are enriched in S. Typhi, because it causes typhoid fever. We discovered a previously unknown family of trehalose phospholipids, 6,6′-diphosphatidyltrehalose (diPT) and 6-phosphatidyltrehalose (PT). Cardiolipin synthase B (ClsB) is essential for PT and diPT but not for cardiolipin biosynthesis. Chemotyping outperformed clsB homology analysis in evaluating synthesis of diPT. DiPT is restricted to a subset of Gram-negative bacteria: large amounts are produced by S. Typhi, lower amounts by other pathogens, and variable amounts by Escherichia coli strains. DiPT activates Mincle, a macrophage activating receptor that also recognizes mycobacterial cord factor (6,6′-trehalose dimycolate). Thus, Gram-negative bacteria show convergent function with mycobacteria. Overall, we discovered a previously unknown immunostimulant that is selectively expressed among medically important bacterial species.
A conceptually new dimethyl sulfoxide (DMSO) based oxidation process without the use of any activator has been demonstrated for the oxidation of active methylenes and benzhydrols. The developed protocol utilizes the electrophilic center of DMSO for oxidation, which was unexplored before. Mechanistic investigation has confirmed that the source of oxygen is DMSO.
13C Metabolic Flux Analysis (13C-MFA) involves the quantification of isotopic enrichment in cellular metabolites and fitting the resultant data to the metabolic network model of the organism. Coverage and resolution of the resultant flux map depends on the total number of metabolites and fragments in which 13C enrichment can be quantified accurately. Experimental techniques for tracking 13C enrichment are evolving rapidly and large volumes of data are now routinely generated through the use of Liquid Chromatography coupled with High-Resolution Mass Spectrometry (HR-LC/MS). Therefore, the current manuscript is focused on the challenges in high-throughput analyses of such large datasets. Current 13C-MFA studies often have to rely on the targeted quantification of a small subset of metabolites, thereby leaving a large fraction of the data unexplored. A number of public domain software tools have been reported in recent years for the untargeted quantitation of isotopic enrichment. However, the suitability of their application across diverse datasets has not been investigated. Here, we test the software tools X13CMS, DynaMet, geoRge, and HiResTEC with three diverse datasets. The tools provided a global, untargeted view of 13C enrichment in metabolites in all three datasets and a much-needed automation in data analysis. Some inconsistencies were observed in results obtained from the different tools, which could be partially ascribed to the lack of baseline separation and potential mass conflicts. After removing the false positives manually, isotopic enrichment could be quantified reliably in a large repertoire of metabolites. Of the software tools explored, geoRge and HiResTEC consistently performed well for the untargeted analysis of all datasets tested.
Diphosphatidyltrehalose
(diPT) is an immunogenic glycolipid, recently
isolated from Salmonella Typhi. Despite
rigorous structure elucidation, the sn-position of
the acyl chains on the glycerol backbone had not been unequivocally
established. A stereoselective synthesis of diPT and its regioisomer
is reported herein. Using a hybrid MS3 approach combining
collisional dissociation and ultraviolet photodissociation mass spectrometry
for analysis of the regioisomers and natural diPT, the regiochemistry
of the acyl chains of this abundant immunostimulatory glycolipid was
established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.