The contraction of a collagen lattice by resident fibroblasts causes strains to be developed within that lattice. These strains can be increased or decreased by altering the aspect ratio (ratio of length/width/thickness) of the fibroblast populated collagen lattice, as the cross‐sectional area resisting the strain is changed and by the application of an external load. The fibroblasts align themselves with the direction of the maximum principle strain; in effect, these cells are “hiding” from the perceived strain. The direction of the maximum principle strain can be pre‐determined by the use of a computational finite element analysis. Using the tensioning‐Culture Force Monitor to apply pre‐determined loading patterns of known repeatable magnitudes, as calculated by the finite element analysis, we have succeeded in aligning fibroblasts into a deliberate predicted orientation. This study has shown that the resident fibroblast population will respond to changes in strain resulting from the most subtle of mechanical loads. This may be an important mechanism in development and repair of connective tissue. Cell Motil. Cytoskeleton 40:13–21, 1998. © 1998 Wiley‐Liss, Inc.
Fibroblast contraction in wound healing involves the interaction of several cell types, cytokines, and extracellular matrix molecules. We have previously developed fibroblast alignment models using precise uniaxial mechanical loads in 3D culture and using contact guidance on fibronectin strands. Our aim here was to use contact guidance to place fibroblasts in their potentially most sensitive configuration, i.e., perpendicular to the axis of loading, to present cells with conflicting guidance cues. Gene expression at the mRNA level of cells recovered from different zones of the 3D collagen gel (with distinct orientation) was determined by quantitative RT-PCR for the matrix proteases MMP1, 2, and 3, and inhibitors TIMP1 and 2.Our results show a 2-, 4-, and 3-fold increase in MMP1, 2, and 3, respectively, in the non-aligned strain zone, relative to the aligned strain zone. These results suggest that cells unable to align to applied loads remodel their matrix far more rapidly than orientated cells. Where fibroblasts were held in an alignment perpendicular to the applied load by contact guidance, the fall in MMP mRNA expression was largely abolished, indicating that these cells remained in a mechano-activated state. The protease inhibitors TIMP1 and 2 were poorly mechano-responsive, further suggesting that changes in MMP expression result in functional matrix remodelling. These results indicate how mechanical loading in tissues may influence matrix remodelling, particularly under conflicting guidance cues.
Tendon disease and injuries carry significant morbidity worldwide in both athletic and non-athletic populations. It is estimated that tendon injuries account for 30%−50% of all musculoskeletal injuries globally. Current treatments have been inadequate in providing an accelerated process of repair resulting in high relapse rates. Modern concepts in tissue engineering and regenerative medicine have led to increasing interest in the application of cell therapy for the treatment of tendon disease. This review will explore the use of cell therapy, by bringing together up-to-date evidence from in vivo human and animal studies, and discuss the issues surrounding the safety and efficacy of its use in the treatment of tendon disease.
Tissue engineered skeletal muscle allows investigation of the cellular and molecular mechanisms that regulate skeletal muscle pathology. The fabricated model must resemble characteristics of in vivo tissue and incorporate cost-effective and high content primary human tissue. Current models are limited by low throughput due to the complexities associated with recruiting tissue donors, donor specific variations, as well as cellular senescence associated with passaging. This research presents a method using fused deposition modeling (FDM) and laser sintering (LS) 3D printing to generate reproducible and scalable tissue engineered primary human muscle, possessing aligned mature myotubes reminiscent of in vivo tissue. Many existing models are bespoke causing variability when translated between laboratories. To this end, a scalable model has been developed (25–500 μL construct volumes) allowing fabrication of mature primary human skeletal muscle. This research provides a strategy to overcome limited biopsy cell numbers, enabling high throughput screening of functional human tissue.
Effective models of mammalian tissues must allow and encourage physiologically (mimetic) correct interactions between co-cultured cell types in order to produce culture microenvironments as similar as possible to those that would normally occur in vivo. In the case of skeletal muscle, the development of such a culture model, integrating multiple relevant cell types within a biomimetic scaffold, would be of significant benefit for investigations into the development, functional performance, and pathophysiology of skeletal muscle tissue. Although some work has been published regarding the behaviour of in vitro muscle models co-cultured with organotypic slices of CNS tissue or with stem cell-derived neurospheres, little investigation has so far been made regarding the potential to maintain isolated motor neurons within a 3D biomimetic skeletal muscle culture platform. Here, we review the current state of the art for engineering neuromuscular contacts in vitro and provide original data detailing the development of a 3D collagen-based model for the co-culture of primary muscle cells and motor neurons. The devised culture system promotes increased myoblast differentiation, forming arrays of parallel, aligned myotubes on which areas of nerve-muscle contact can be detected by immunostaining for pre- and post-synaptic proteins. Quantitative RT-PCR results indicate that motor neuron presence has a positive effect on myotube maturation, suggesting neural incorporation influences muscle development and maturation in vitro. The importance of this work is discussed in relation to other published neuromuscular co-culture platforms along with possible future directions for the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.