as information and communication technology has become pervasive in our society, we are increasingly dependent on both digital data and repositories that provide access to and enable the use of such resources. Repositories must earn the trust of the communities they intend to serve and demonstrate that they are reliable and capable of appropriately managing the data they hold.
Biomedical research has become a digital data–intensive endeavor, relying on secure and scalable computing, storage, and network infrastructure, which has traditionally been purchased, supported, and maintained locally. For certain types of biomedical applications, cloud computing has emerged as an alternative to locally maintained traditional computing approaches. Cloud computing offers users pay-as-you-go access to services such as hardware infrastructure, platforms, and software for solving common biomedical computational problems. Cloud computing services offer secure on-demand storage and analysis and are differentiated from traditional high-performance computing by their rapid availability and scalability of services. As such, cloud services are engineered to address big data problems and enhance the likelihood of data and analytics sharing, reproducibility, and reuse. Here, we provide an introductory perspective on cloud computing to help the reader determine its value to their own research.
Molecular dynamics was used to analzye energy transfer rates between matrix and guest molecules in matrix-assisted laser desorption allowing for a large number of internal degrees of freedom. The effect of initial matrix temperature jump on internal energy equilibration times and on guest limiting temperatures has been studied on a model system comprising a pyridine-3-carboxylic acid matrix and leucine enkephalin (Tyr-Gly-Gly-Phe-Leu) guest molecule. It appears that the energy transfer rates between matrix and guest molecules depend on the initial matrix temperature jump. The initial matrix temperature of 900 K leads to incomplete desorption, whereas at 1500 K complete desorption and the formation of an energy-transfer bottleneck was observed. Following the guest center-of-mass at different initial matrix temperatures indicates that in the case of 1500 K and 3000 K the desorption process is complete, whereas at 900 K the guest molecule stays near the matrix surface. In the case of complete desorption deeper embedding of the guest molecules leads to somewhat lower guest limiting temperatures. Uniformly higher limiting temperatures are observed for higher laser irradiance and the increase in burial depth leads to more complete equilibration between the two species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.