There has been an increasing use of functional magnetic resonance imaging (fMRI) by the neuroscience community to examine differences in functional connectivity between normal control groups and populations of interest. Understanding the reliability of these functional connections is essential to the study of neurological development and degenerate neuropathological conditions. To date, most research assessing the reliability with which resting-state functional connectivity characterizes the brain’s functional networks has been on scans between 3 and 11 min in length. In our present study, we examine the test–retest reliability and similarity of resting-state functional connectivity for scans ranging in length from 3 to 27 min as well as for time series acquired during the same length of time but excluding half the time points via sampling every second image. Our results show that reliability and similarity can be greatly improved by increasing the scan lengths from 5 min up to 13 min, and that both the increase in the number of volumes as well as the increase in the length of time over which these volumes was acquired drove this increase in reliability. This improvement in reliability due to scan length is much greater for scans acquired during the same session. Gains in intersession reliability began to diminish after 9–12 min, while improvements in intrasession reliability plateaued around 12–16 min. Consequently, new techniques that improve reliability across sessions will be important for the interpretation of longitudinal fMRI studies.
Ability to integrate diverse forms of information in current thought, or working memory, is essential for human reasoning and problem solving. We used functional imaging to identify brain regions preferentially involved in maintaining integrated versus unintegrated information in working memory. For equal amounts of verbal and spatial information, activation of prefrontal cortex was greater for maintaining integrated rather than unintegrated representations. Posterior brain regions showed the opposite pattern. These results demonstrate frontal-lobe specialization in maintaining working-memory representations that integrate verbal and spatial information. The role of prefrontal cortex in integrating multiple forms of information in working memory may underlie its unique contribution to high-level cognition that demands flexible mental representations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.