ObjectiveThe Development of a Novel Mixed Reality (MR) Simulation.An evolving training environment emphasizes the importance of simulation. Current haptic temporal bone simulators have difficulty representing realistic contact forces and while 3D printed models convincingly represent vibrational properties of bone, they cannot reproduce soft tissue. This paper introduces a mixed reality model, where the effective elements of both simulations are combined; haptic rendering of soft tissue directly interacts with a printed bone model.This paper addresses one aspect in a series of challenges, specifically the mechanical merger of a haptic device with an otic drill. This further necessitates gravity cancelation of the work assembly gripper mechanism. In this system, the haptic end-effector is replaced by a high-speed drill and the virtual contact forces need to be repositioned to the drill tip from the mid wand.Previous publications detail generation of both the requisite printed and haptic simulations.MethodCustom software was developed to reposition the haptic interaction point to the drill tip. A custom fitting, to hold the otic drill, was developed and its weight was offset using the haptic device. The robustness of the system to disturbances and its stable performance during drilling were tested. The experiments were performed on a mixed reality model consisting of two drillable rapid-prototyped layers separated by a free-space. Within the free-space, a linear virtual force model is applied to simulate drill contact with soft tissue.ResultsTesting illustrated the effectiveness of gravity cancellation. Additionally, the system exhibited excellent performance given random inputs and during the drill’s passage between real and virtual components of the model. No issues with registration at model boundaries were encountered.ConclusionThese tests provide a proof of concept for the initial stages in the development of a novel mixed-reality temporal bone simulator.
BackgroundTemporal bone simulations are critiqued for poor drill‐bone interaction. This project appraises the import of increasing haptic device and manipulandum fidelity on the perceived realism of drilling a virtual temporal bone.Virtual surgical contact forces rely on haptic device fidelity and are transmitted through a manipulandum. With identical software, both device hardware and manipulandum may each contribute to realism. We compare the three degrees of freedom (DOF), 3N Geomagic Touch (3D Systems, SC) to a 6DOF, 5.5N HD2 (Quanser, ON) with the both standard (“HD2–Standard”) and in‐house customized otic drill manipulandum (“HD2–Modified”).MethodsSix otologic surgeons performed three virtual mastoidectomy surgeries on a temporal bone surgical simulator. The HD2 manipulandum was modified for attached otic drill with gravity compensation and requisite mechanical modifications. Surgeons, in random order, performed the dissection with the different hardware platforms.ResultsTwo‐tailed t‐tests demonstrate that for the acoustic properties of each simulation, the HD2–Modified manipulandum was favored (p ≤ 0.0004). For overall similarity of bone, both HD2–Standard (p ≤ 0.05) HD2–Modified (p ≤ 0.03)) were favored over the Geomagic; however they were not appreciably different when directly compared to each other. There was no preference for increasing haptic device fidelity in virtual drill bone interaction.In forced rank, users favored the HD2–Modified in osseus, vibrational and overall realism, as well as being preferred for education and preoperative rehearsal (p ≤ 0.0164).ConclusionIncreasing manipulandum realism was favored. However surprisingly, there was no preference for increased device fidelity, illustrating incremental stiffness had nominal impact. There may be a ceiling to drill bone interaction in virtual haptic simulation.Level of Evidence2b.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.