In self-organizing networks, nodes are expected to perform services (such as forwarding packets) for one another. The design of incentive mechanisms that lead nodes to cooperate towards a network-wide goal is crucial for the deployment of such networks in commercial environments. In this paper we employ game theory to analyze a behavior-based incentive scheme for node cooperation in packet forwarding. Our analysis includes an evaluation of the effectiveness of the scheme in achieving an optimal solution, as well as stability considerations. One of the contributions of this work is the modeling of imperfect monitoring, recognizing that in practice nodes do not have perfect information regarding their neighbors' actions on which to base their decisions of whether to cooperate.
The presence of principal ions in the water injected is essential for enhanced oil recovery by formation of water-wet state in carbonates. This study reaffirms this and presents an evaluation of the positive influence of both divalent as wells as monovalent ions on wettability alteration mechanisms during low salinity waterflooding using brines of varying ionic composition, referred to as “smart brines”. Zeta potentiometric analysis and reservoir simulation studies were conducted with diluted and smart brines that were prepared by varying the composition of principal ions. Surface charge of oil-saturated whole core samples of rock in the presence of various diluted and smart brines was estimated by zeta potential measurements. A comprehensive analysis of zeta potentiometric and reservoir simulation studies was done to establish and investigate the linkage between the recovery mechanism and the incremental recovery achieved. It is noted that zeta potential increases with the increasing level of dilution and it can be attributed to electric double-layer mechanism. On the contrary, simulation studies implied a different mechanism where an increase in effluent’s pH and Ca2+ mole fraction along with decrease in moles of minerals and saturation index implied rock dissolution was dominant mechanism. Moreover, the effect of mineral dissolution beyond the injection block is highly doubtful. This study demonstrates that an integrated approach from both zeta potentiometric and simulation studies can be used to provide insights into the underlying science of interactions at pore scale during a low salinity waterflood using smart brines. With the aid of an adequately designed upscaling procedure and protocol, the laboratory results can be further used towards developing field-scale models to obtain with realistic recovery factors with optimized brine composition and salinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.