Advancement of high-throughput technologies in omics studies had produced large amount of information that enables integrated analysis of complex diseases. Complex diseases such as cancer are often caused by a series of interactions that involve multiple biological mechanisms. Integration of multi-omics data allows more advanced analysis using features from various aspects of biology. However, analysing cancer multi-omics data on a large scale could be challenging due to the high dimensionality of the data. The recent development of advanced computational algorithms, especially deep learning, had sparkednumerous efforts in applying these algorithms in multi-omics studies. This study aims to investigate how deep learning algorithms, namely stacked denoising autoencoder (SDAE) and variational autoencoder (VAE) can be used in cancer classification using multi-omics data. Moreover, this study also investigates the impact of feature selection in multi-omics analysis through the implementation of an embedded feature selection. The multi-omics data used in this study includes genomics, methylomics, transcriptomics and clinical data for a case study of lung squamous cell carcinoma. The classification performance has beencompared and discussed in terms of the effectiveness of different models and the impact of feature selection. Results showed that VAE outperforms SDAE with 91.86% accuracy, 22.73% specificity and 0.21% Matthews Correlation Coefficient (MCC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.