Hypoxia is a characteristic feature of the tissue microenvironment during bacterial infection. Here we report on our use of conditional gene targeting to examine the contribution of hypoxia-inducible factor 1, α subunit (HIF-1α) to myeloid cell innate immune function. HIF-1α was induced by bacterial infection, even under normoxia, and regulated the production of key immune effector molecules, including granule proteases, antimicrobial peptides, nitric oxide, and TNF-α. Mice lacking HIF-1α in their myeloid cell lineage showed decreased bactericidal activity and failed to restrict systemic spread of infection from an initial tissue focus. Conversely, activation of the HIF-1α pathway through deletion of von Hippel-Lindau tumor-suppressor protein or pharmacologic inducers supported myeloid cell production of defense factors and improved bactericidal capacity. HIF-1α control of myeloid cell activity in infected tissues could represent a novel therapeutic target for enhancing host defense.
Golden color imparted by carotenoid pigments is the eponymous feature of the human pathogen Staphylococcus aureus. Here we demonstrate a role of this hallmark phenotype in virulence. Compared with the wild-type (WT) bacterium, a S. aureus mutant with disrupted carotenoid biosynthesis is more susceptible to oxidant killing, has impaired neutrophil survival, and is less pathogenic in a mouse subcutaneous abscess model. The survival advantage of WT S. aureus over the carotenoid-deficient mutant is lost upon inhibition of neutrophil oxidative burst or in human or murine nicotinamide adenine dinucleotide phosphate oxidase–deficient hosts. Conversely, heterologous expression of the S. aureus carotenoid in the nonpigmented Streptococcus pyogenes confers enhanced oxidant and neutrophil resistance and increased animal virulence. Blocking S. aureus carotenogenesis increases oxidant sensitivity and decreases whole-blood survival, suggesting a novel target for antibiotic therapy.
Hepcidin is an antimicrobial peptide secreted by the liver during inflammation that plays a central role in mammalian iron homeostasis. Here we demonstrate the endogenous expression of hepcidin by macrophages and neutrophils in vitro and in vivo. These myeloid cell types produced hepcidin in response to bacterial pathogens in a toll-like receptor 4 (TLR4)-dependent fashion. Conversely, bacterial stimulation of macrophages triggered a TLR4-dependent reduction in the iron exporter ferroportin. In vivo, intraperitoneal challenge with Pseudomonas aeruginosa induced TLR4-dependent hepcidin expression and iron deposition in splenic macrophages, findings mirrored in subcutaneous infection with group A Streptococcus where hepcidin induction was further observed in neutrophils migrating to the tissue site of infection. Hepcidin expression in cultured hepatocytes or in the livers of mice infected with bacteria was independent of TLR4, suggesting the TLR4-hepcidin pathway is restricted to myeloid cell types. Our findings identify endogenous myeloid cell hepcidin production as a previously unrecognized component of the host response to bacterial pathogens.
Group A streptococcus (GAS) is a leading cause of severe, invasive human infections, including necrotizing fasciitis and toxic shock syndrome. An important element of the mammalian innate defense system against invasive bacterial infections such as GAS is the production of antimicrobial peptides (AMPs) such as cathelicidins. In this study, we identify a specific GAS phenotype that confers resistance to host AMPs. Allelic replacement of the dltA gene encoding D-alanine-D-alanyl carrier protein ligase in an invasive serotype M1 GAS isolate led to loss of teichoic acid D-alanylation and an increase in net negative charge on the bacterial surface. Compared to the wild-type (WT) parent strain, the GAS ⌬dltA mutant exhibited increased susceptibility to AMP and lysozyme killing and to acidic pH. While phagocytic uptake of WT and ⌬dltA mutants by human neutrophils was equivalent, neutrophil-mediated killing of the ⌬dltA strain was greatly accelerated. Furthermore, we observed the ⌬dltA mutant to be diminished in its ability to adhere to and invade cultured human pharyngeal epithelial cells, a likely proximal step in the pathogenesis of invasive infection. Thus, teichoic acid D-alanylation may contribute in multiple ways to the propensity of invasive GAS to bypass mucosal defenses and produce systemic infection.
SummaryThe pathogen group A Streptococcus (GAS) produces a wide spectrum of infections including necrotizing fasciitis (NF). Streptolysin S (SLS) produces the hallmark b b b b -haemolytic phenotype produced by GAS. The nine-gene GAS locus ( sag A-sag I) resembling a bacteriocin biosynthetic operon is necessary and sufficient for SLS production. Using precise, inframe allelic exchange mutagenesis and single-gene complementation, we show sag A, sag B, sag C, sag D, sag E, sag F and sag G are each individually required for SLS production, and that sag E may further serve an immunity function. Limited site-directed mutagenesis of specific amino acids in the SagA prepropeptide supports the designation of SLS as a bacteriocin-like toxin. No significant pleotrophic effects of sag A deletion were observed on M protein, capsule or cysteine protease production. In a murine model of NF, the SLS-negative M1T1 GAS mutant was markedly diminished in its ability to produce necrotic skin ulcers and spread to the systemic circulation. The SLS toxin impaired phagocytic clearance and promoted epithelial cell cytotoxicity, the latter phenotype being enhanced by the effects of M protein and streptolysin O. We conclude that all genetic components of the sag operon are required for expression of functional SLS, an important virulence factor in the pathogenesis of invasive M1T1 GAS infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.