Small molecules that selectively kill senescent cells (SCs), termed senolytics, have the potential to prevent and treat various age-related diseases and extend healthspan. The use of Bcl-xl inhibitors as senolytics is largely limited by their on-target and dose-limiting platelet toxicity. Here, we report the use of proteolysis-targeting chimera (PROTAC) technology to reduce the platelet toxicity of navitoclax (also known as ABT263), a Bcl-2 and Bcl-xl dual inhibitor, by converting it into PZ15227 (PZ), a Bcl-xl PROTAC, which targets Bcl-xl to the cereblon (CRBN) E3 ligase for degradation. Compared to ABT263, PZ is less toxic to platelets, but equally or slightly more potent against SCs because CRBN is poorly expressed in platelets. PZ effectively clears SCs and rejuvenates tissue stem and progenitor cells in naturally aged mice without causing severe thrombocytopenia. With further improvement, Bcl-xl PROTACs have the potential to become safer and more potent senolytic agents than Bcl-xl inhibitors.
Immunosenescence is a multi-faceted phenomenon at the root of age-associated immune dysfunction. It can lead to an array of pathological conditions, including but not limited to a decreased capability to surveil and clear senescent cells (SnCs) and cancerous cells, an increased autoimmune response leading to tissue damage, a reduced ability to tackle pathogens, and a decreased competence to illicit a robust response to vaccination. Cellular senescence is a phenomenon by which oncogene-activated, stressed or damaged cells undergo a stable cell cycle arrest. Failure to efficiently clear SnCs results in their accumulation in an organism as it ages. SnCs actively secrete a myriad of molecules, collectively called senescence-associated secretory phenotype (SASP), which are factors that cause dysfunction in the neighboring tissue. Though both cellular senescence and immunosenescence have been studied extensively and implicated in various pathologies, their relationship has not been greatly explored. In the wake of an ongoing pandemic (COVID-19) that disproportionately affects the elderly, immunosenescence as a function of age has become a topic of great importance. The goal of this review is to explore the role of cellular senescence in age-associated lymphoid organ dysfunction and immunosenescence, and provide a framework to explore therapies to rejuvenate the aged immune system.
Background: Patients with advanced T cell lymphomas (TCLs) have limited therapeutic options and poor outcomes in part because their TCLs evade apoptosis through upregulation of anti-apoptotic Bcl-2 proteins. Subsets of TCL cell lines, patientderived xenografts (PDXs), and primary patient samples depend on Bcl-xL for survival. However, small molecule Bcl-xL inhibitors such as ABT263 have failed during clinical development due to on-target and dose-limiting thrombocytopenia. Methods: We have developed DT2216, a proteolysis targeting chimera (PROTAC) targeting Bcl-xL for degradation via Von Hippel-Lindau (VHL) E3 ligase, and shown that it has better anti-tumor activity but is less toxic to platelets compared to ABT263. Here, we examined the therapeutic potential of DT2216 for TCLs via testing its anti-TCL activity in vitro using MTS assay, immunoblotting, and flow cytometry and anti-TCL activity in vivo using TCL cell xenograft and PDX model in mice. Results: The results showed that DT2216 selectively killed various Bcl-xL-dependent TCL cells including MyLa cells in vitro. In vivo, DT2216 alone was highly effective against MyLa TCL xenografts in mice without causing significant thrombocytopenia or other toxicity. Furthermore, DT2216 combined with ABT199 (a selective Bcl-2 inhibitor) synergistically reduced disease burden and improved survival in a TCL PDX mouse model dependent on both Bcl-2 and Bcl-xL. Conclusions: These findings support the clinical testing of DT2216 in patients with Bcl-xL-dependent TCLs, both as a single agent and in rational combinations.
We examine similar and differential effects of two senolytic treatments, ABT‐263 and dasatinib + quercetin (D + Q), in preserving cognition, markers of peripheral senescence, and markers of brain aging thought to underlie cognitive decline. Male F344 rats were treated from 12 to 18 months of age with D + Q, ABT‐263, or vehicle, and were compared to young (6 months). Both senolytic treatments rescued memory, preserved the blood–brain barrier (BBB) integrity, and prevented the age‐related decline in hippocampal N‐methyl‐D‐aspartate receptor (NMDAR) function associated with impaired cognition. Senolytic treatments decreased senescence‐associated secretory phenotype (SASP) and inflammatory cytokines/chemokines in the plasma (IL‐1β, IP‐10, and RANTES), with some markers more responsive to D + Q (TNFα) or ABT‐263 (IFNγ, leptin, EGF). ABT‐263 was more effective in decreasing senescence genes in the spleen. Both senolytic treatments decreased the expression of immune response and oxidative stress genes and increased the expression of synaptic genes in the dentate gyrus (DG). However, D + Q influenced twice as many genes as ABT‐263. Relative to D + Q, the ABT‐263 group exhibited increased expression of DG genes linked to cell death and negative regulation of apoptosis and microglial cell activation. Furthermore, D + Q was more effective at decreasing morphological markers of microglial activation. The results indicate that preserved cognition was associated with the removal of peripheral senescent cells, decreasing systemic inflammation that normally drives neuroinflammation, BBB breakdown, and impaired synaptic function. Dissimilarities associated with brain transcription indicate divergence in central mechanisms, possibly due to differential access.
The accumulation of senescent cells (SnCs) is a causal factor of various age‐related diseases as well as some of the side effects of chemotherapy. Pharmacological elimination of SnCs (senolysis) has the potential to be developed into novel therapeutic strategies to treat these diseases and pathological conditions. Here we show that ubiquitin‐specific peptidase 7 (USP7) is a novel target for senolysis because inhibition of USP7 with an inhibitor or genetic depletion of USP7 by RNA interference induces apoptosis selectively in SnCs. The senolytic activity of USP7 inhibitors is likely attributable in part to the promotion of the human homolog of mouse double minute 2 (MDM2) ubiquitination and degradation by the ubiquitin–proteasome system. This degradation increases the levels of p53, which in turn induces the pro‐apoptotic proteins PUMA, NOXA, and FAS and inhibits the interaction of BCL‐XL and BAK to selectively induce apoptosis in SnCs. Further, we show that treatment with a USP7 inhibitor can effectively eliminate SnCs and suppress the senescence‐associated secretory phenotype (SASP) induced by doxorubicin in mice. These findings suggest that small molecule USP7 inhibitors are novel senolytics that can be exploited to reduce chemotherapy‐induced toxicities and treat age‐related diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.