Watching it all fall apart The control of the shape and size of metal nanoparticles can be very sensitive to the growth conditions of the particles. Ye et al. studied the reverse process: They tracked the dissolution of gold nanoparticles in a redox environment inside a liquid cell within an electron microscope, controlling the particle dissolution with the electron beam. Tracking short-lived particle shapes revealed structures of greater or lesser stability. The findings suggest kinetic routes to particle sizes and shapes that would otherwise be difficult to generate. Science , this issue p. 874
By virtue of their low mass and stiffness, atomically thin mechanical resonators are attractive candidates for use in optomechanics. Here, we demonstrate photothermal back-action in a graphene mechanical resonator comprising one end of a Fabry-Perot cavity. As a demonstration of the utility of this effect, we show that a continuous wave laser can be used to cool a graphene vibrational mode or to power a graphene-based tunable frequency oscillator. Owing to graphene's high thermal conductivity and optical absorption, photothermal optomechanics is efficient in graphene and could ultimately enable laser cooling to the quantum ground state or applications such as photonic signal processing.
As superconducting quantum circuits scale to larger sizes, the problem of frequency crowding proves a formidable task. Here we present a solution for this problem in fixed-frequency qubit architectures. By systematically adjusting qubit frequencies post-fabrication, we show a nearly tenfold improvement in the precision of setting qubit frequencies. To assess scalability, we identify the types of “frequency collisions” that will impair a transmon qubit and cross-resonance gate architecture. Using statistical modeling, we compute the probability of evading all such conditions, as a function of qubit frequency precision. We find that, without post-fabrication tuning, the probability of finding a workable lattice quickly approaches 0. However, with the demonstrated precisions it is possible to find collision-free lattices with favorable yield. These techniques and models are currently employed in available quantum systems and will be indispensable as systems continue to scale to larger sizes.
We have characterized mechanical properties of ultrananocrystalline diamond UNCD thin films grown using the hot filament chemical vapor deposition HFCVD technique at 680 °C, significantly lower than the conventional growth temperature of 800 °C. The films have 4.3% sp2 content in the near-surface region as revealed by near edge x-ray absorption fine structure spectroscopy. The films, 1 m thick, exhibit a net residual compressive stress of 3701 MPa averaged over the entire 150 mm wafer. UNCD microcantilever resonator structures and overhanging ledges were fabricated using lithography, dry etching, and wet release techniques. Overhanging ledges of the films released from the substrate exhibited periodic undulations due to stress relaxation. This was used to determine a biaxial modulus of 8382 GPa. Resonant excitation and ring-down measurements in the kHz frequency range of the microcantilevers were conducted under ultrahigh vacuum UHV conditions in a customized UHV atomic force microscope system to determine Young's modulus as well as mechanical dissipation of cantilever structures at room temperature. Young's modulus is found to be 79030 GPa. Based on these measurements, Poisson's ratio is estimated to be 0.0570.038. The quality factors Q of these resonators ranged from 5000 to 16000. These Q values are lower than theoretically expected from the intrinsic properties of diamond. The results indicate that surface and bulk defects are the main contributors to the observed dissipation in UNCD resonators. We have characterized mechanical properties of ultrananocrystalline diamond ͑UNCD͒ thin films grown using the hot filament chemical vapor deposition ͑HFCVD͒ technique at 680°C, significantly lower than the conventional growth temperature of ϳ800°C. The films have ϳ4.3% sp 2 content in the near-surface region as revealed by near edge x-ray absorption fine structure spectroscopy. The films, ϳ1 m thick, exhibit a net residual compressive stress of 370Ϯ 1 MPa averaged over the entire 150 mm wafer. UNCD microcantilever resonator structures and overhanging ledges were fabricated using lithography, dry etching, and wet release techniques. Overhanging ledges of the films released from the substrate exhibited periodic undulations due to stress relaxation. This was used to determine a biaxial modulus of 838Ϯ 2 GPa. Resonant excitation and ring-down measurements in the kHz frequency range of the microcantilevers were conducted under ultrahigh vacuum ͑UHV͒ conditions in a customized UHV atomic force microscope system to determine Young's modulus as well as mechanical dissipation of cantilever structures at room temperature. Young's modulus is found to be 790Ϯ 30 GPa. Based on these measurements, Poisson's ratio is estimated to be 0.057Ϯ 0.038. The quality factors ͑Q͒ of these resonators ranged from 5000 to 16000. These Q values are lower than theoretically expected from the intrinsic properties of diamond. The results indicate that surface and bulk defects are the main contributors to the observed dissipation in UNCD re...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.