Robots operating in real world environments require a high-level perceptual understanding of the chief physical properties of the terrain they are traversing. In unknown environments, roughness is one such important terrain property that could play a key role in devising robot control/planning strategies. In this paper, we present a fast method for predicting pixel-wise labels of terrain (stone, sand, road/sidewalk, wood, grass, metal) and roughness estimation, using a single RGBbased deep neural network. Real world RGB images are used to experimentally validate the presented approach. Furthermore, we demonstrate an application of our proposed method on the centaur-like wheeled-legged robot CENTAURO, by integrating it with a navigation planner that is capable of re-configuring the leg joints to modify the robot footprint polygon for stability purposes or for safe traversal among obstacles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.