Chemotherapy continues to play an essential role in the management of many cancers including colon cancer, the third leading cause of death due to cancer in the United States. Many naturally occurring plant compounds have been demonstrated to possess anti-cancer cell activity and have the potential to supplement existing chemotherapy strategies. The plant metabolite andrographolide induces cell death in cancer cells and apoptosis is dependent upon the induction of endoplasmic reticulum stress (ER stress) leading to the unfolded protein response (UPR). The goal of the present study was to determine the mechanism by which andrographolide induces ER stress and to further evaluate its role in promoting cell death pathways. The T84 and COLO 205 cancer cell lines were used to demonstrate that andrographolide induces increased ROS levels, corresponding anti-oxidant response molecules, and reduced mitochondrial membrane potential. No increases in ROS levels were detected in control colon fibroblast cells. Andrographolide-induced cell death, UPR signaling, and CHOP, Bax, and caspase 3 apoptosis elements were all inhibited in the presence of the ROS scavenger NAC. Additionally, andrographolide-induced suppression of cyclins B1 and D1 were also reversed in the presence of NAC. Finally, Akt phosphorylation and phospho-mTOR levels that are normally suppressed by andrographolide were also expressed at normal levels in the absence of ROS. These data demonstrate that andrographolide induces ER stress leading to apoptosis through the induction of ROS and that elevated ROS also play an important role in down-regulating cell cycle progression and cell survival pathways as well.
Background/Aims: Silencing of tumor suppressor genes (TSGs) and promotion of angiogenesis are associated with tumor development and metastasis. However, little is known if angiogenic molecules directly control TSGs and vice versa. Methods: A regulatory link between angiogenesis and down regulation of TSGs was evaluated using an anti-cancer agent, andrographolide (AGP) in cancer cells, mouse xenograft tissues and patient derived organoids through gene/protein expression, gene silencing, and immunohistochemical analyses. Results: AGP treatment demonstrated significant expression of RASSF1A and PTEN TSGs in colon cancer and other cancer cells, mouse tissues and organoids. Depletion of RASSF1A with siRNA limited cyclin D1 and BAX expression. SiRNA depletion of PTEN, upstream regulator of RASSF1A resulted in a 50% reduction in RASSF1A expression. Histopathological analysis of the AGP treated tumor sections showed significant reduction in vessel size, microvascular density and tumor mitotic index suggesting suppression of angiogenesis. This was corroborated by protein analysis demonstrating significant reductions in angiogenesis signaling pathway molecules VEGF165, FOXM1, and pAkt, but significant elevation of the endogenous angiogenesis inhibitor Tsp-2. Treatment of cells with exogenous VEGF prevented the suppression of angiogenesis signaling by AGP, resulting in sustained expression of pAkt, an upstream down-regulator of RASSF1A. RASSF1A expression remained low in VEGF treated cells despite the addition of AGP. Conclusion: Our results demonstrate for the first time that AGP induces RASSF1A expression in colon cancer cells and is dependent on angiogenesis signaling events. Therefore, our research may facilitate novel therapeutic options for advanced colon cancer therapy.
Metastatic colorectal cancer (mCRC) is characterized by the expression of cellular oncogenes, the loss of tumor suppressor gene function. Therefore, identifying integrated signaling between onco-suppressor genes may facilitate the development of effective therapy for mCRC. To investigate these pathways we utilized cell lines and patient derived organoid models for analysis of gene/protein expression, gene silencing, overexpression, and immunohistochemical analyses. An inverse relationship in expression of oncogenic FoxM1 and tumor suppressor RASSF1A was observed in various stages of CRC. This inverse correlation was also observed in mCRC cells lines (T84, Colo 205) treated with Akt inhibitor. Inhibition of FoxM1 expression in mCRC cells as well as in our ex vivo model resulted in increased RASSF1A expression. Reduced levels of RASSF1A expression were found in normal cells (RWPE-1, HBEpc, MCF10A, EC) stimulated with exogenous VEGF165. Downregulation of FoxM1 also coincided with increased YAP phosphorylation, indicative of tumor suppression. Conversely, downregulation of RASSF1A coincided with FoxM1 overexpression. These studies have identified for the first time an integrated signaling pathway between FoxM1 and RASSF1A in mCRC progression, which may facilitate the development of novel therapeutic options for advanced colon cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.