BackgroundThere is scant research that simultaneously analyzes the joint effects of long-term unemployment, poverty and public expenditure policies on poorer self-perceived health during the financial crisis. The aim of the study is to analyze the joint relationship between long-term unemployment, social deprivation, and regional social public expenditure on one side, and self-perceived health in Spain (2007–2011) on the other.MethodsLongitudinal data were extracted from the Survey on Living Conditions, 2007–2010 and 2008–2011 (9105 individuals and 36,420 observations), which were then used to estimate several random group effects in the constant multilevel logistic longitudinal models (level 1: year; level 2: individual; level 3: region). The dependent variable was self-perceived health. Individual independent interest variables were long and very long term unemployment, available income, severe material deprivation and regional variables were per capita expenditure on essential public services and per capita health care expenditure.ResultsAll of the estimated models show a robust association between bad perceived health and the variables of interest. When compared to employed individuals, long term unemployment increases the odds of reporting bad health by 22% to 67%; very long-term unemployment (24 to 48 months) increases the odds by 54% to 132%. Family income reduces the odds of reporting bad health by 16% to 28% for each additional percentage point in income. Being a member of a household with severe material deprivation increases the odds of perceiving one’s health as bad by between 70% and 140%. Regionally, per capita expenditure on essential public services increases the odds of reporting good health, although the effect of this association was limited.ConclusionsLong and very long term unemployment, available income and poverty were associated to self-perceived bad health in Spain during the financial crisis. Regional expenditure on fundamental public services is also associated to poor self-perceived health, although in a more limited fashion. Results suggest the positive role in health of active employment and redistributing income policies.
BackgroundMissed, delayed or incorrect diagnoses are considered to be diagnostic errors. The aim of this paper is to describe the methodology of a study to analyse cognitive aspects of the process by which primary care (PC) physicians diagnose dyspnoea. It examines the possible links between the use of heuristics, suboptimal cognitive acts and diagnostic errors, using Reason’s taxonomy of human error (slips, lapses, mistakes and violations). The influence of situational factors (professional experience, perceived overwork and fatigue) is also analysed.MethodsCohort study of new episodes of dyspnoea in patients receiving care from family physicians and residents at PC centres in Granada (Spain). With an initial expected diagnostic error rate of 20%, and a sampling error of 3%, 384 episodes of dyspnoea are calculated to be required. In addition to filling out the electronic medical record of the patients attended, each physician fills out 2 specially designed questionnaires about the diagnostic process performed in each case of dyspnoea. The first questionnaire includes questions on the physician’s initial diagnostic impression, the 3 most likely diagnoses (in order of likelihood), and the diagnosis reached after the initial medical history and physical examination. It also includes items on the physicians’ perceived overwork and fatigue during patient care. The second questionnaire records the confirmed diagnosis once it is reached. The complete diagnostic process is peer-reviewed to identify and classify the diagnostic errors. The possible use of heuristics of representativeness, availability, and anchoring and adjustment in each diagnostic process is also analysed. Each audit is reviewed with the physician responsible for the diagnostic process. Finally, logistic regression models are used to determine if there are differences in the diagnostic error variables based on the heuristics identified.DiscussionThis work sets out a new approach to studying the diagnostic decision-making process in PC, taking advantage of new technologies which allow immediate recording of the decision-making process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.