Neuropathic pain is a frequent condition caused by a lesion or disease of the central or peripheral somatosensory nervous system. A frequent cause of peripheral neuropathic pain is diabetic neuropathy. Its complex pathophysiology is not yet fully elucidated, which contributes to underassessment and undertreatment. A mechanism-based treatment of painful diabetic neuropathy is challenging but phenotype-based stratification might be a way to develop individualized therapeutic concepts. Our goal is to review current knowledge of the pathophysiology of peripheral neuropathic pain, particularly painful diabetic neuropathy. We discuss state-of-the-art clinical assessment, validity of diagnostic and screening tools, and recommendations for the management of diabetic neuropathic pain including approaches towards personalized pain management. We also propose a research agenda for translational research including patient stratification for clinical trials and improved preclinical models in relation to current knowledge of underlying mechanisms.
Neuroactive substances released by activated microglia contribute to hyperexcitability of spinal dorsal horn neurons in many animal models of chronic pain. An important feedback loop mechanism is via release of fractalkine (CX3CL1) from primary afferent terminals and dorsal horn neurons and binding to CX3CR1 receptors on microglial cells. We studied the involvement of fractalkine signaling in latent and manifest spinal sensitization induced by two injections of nerve growth factor (NGF) into the lumbar multifidus muscle as a model for myofascial low back pain. Single dorsal horn neurons were recorded in vivo to study their receptive fields and spontaneous activity. Under intrathecal vehicle application, the two NGF injections led to an increased proportion of neurons responding to stimulation of deep tissues (41%), to receptive field expansion into the hind limb (15%), and to resting activity (53%). Blocking fractalkine signaling by continuous intrathecal administration of neutralizing antibodies completely prevented these signs of spinal sensitization to a similar extent as in a previous study with the microglia inhibitor minocycline. Reversely, fractalkine itself induced similar sensitization in a dose dependent manner (for 200 ng/ml: 45% deep tissue responses, 24% receptive field expansion, 45% resting activity) as repeated nociceptive stimulation by intramuscular NGF injections. A subsequent single NGF injection did not have an additive effect. Our data suggest that neuron to microglia signaling via the CX3CL1-CX3CR1 pathway is critically involved in the initiation of non-specific, myofascial low back pain through repetitive nociceptive stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.