Protein tyrosine phosphatase (PTP1B) has been implicated in the negative regulation of insulin and leptin signaling. PTP1B knockout mice are hypersensitive to insulin and leptin and resistant to obesity when fed a high-fat diet. We investigated the role of hypothalamic PTP1B in the regulation of food intake, insulin and leptin actions and signaling in rats through selective decreases in PTP1B expression in discrete hypothalamic nuclei. We generated a selective, transient reduction in PTP1B by infusion of an antisense oligonucleotide designed to blunt the expression of PTP1B in rat hypothalamic areas surrounding the third ventricle in control and obese rats. The selective decrease in hypothalamic PTP1B resulted in decreased food intake, reduced body weight, reduced adiposity after high-fat feeding, improved leptin and insulin action and signaling in hypothalamus, and may also have a role in the improvement in glucose metabolism in diabetes-induced obese rats.
Aims/hypothesis: To assess the involvement of the AGE-specific receptor (AGER, also known as RAGE) axis and nuclear factor kappa-B (NFKB, also known as NF-kappaB) activation in the development of lacrimal gland and tear film dysfunction in diabetes, the present study evaluated: (1) lacrimal gland and tear film alterations in diabetic rats; and (2) the expression of AGE, AGER and NFKB in ocular tissues of normoglycaemic and diabetic rats. Materials and Methods: Diabetes was induced in male Wistar rats with intravenous streptozotocin. Tear secretion parameters were measured and NFKB expression was evaluated in lacrimal glands of control and diabetic rats by western blot. Immunohistochemistry with confocal microscopy was used to assess AGE, AGER and NFKB expression in lacrimal glands of both groups. Results: Lacrimal gland weight and tear film volume were lower in diabetic than in control rats (p=0.01 and 0.02, respectively). IL1B and TNF concentrations in tears were higher in diabetic than in control rats (p=0.007 and 0.02, respectively). NFKB protein was identified in rat cornea, conjunctiva and lacrimal glands. AGE, AGER and NFKB expression were greater in lacrimal glands of diabetic than in those of control rats. Conclusions/interpretation: Diabetes induces significant alterations in rat lacrimal gland structure and secretion. The higher expression of AGE, AGER and NFKB in lacrimal glands of diabetic rats suggests that these factors are involved in signalling and in subsequent inflammatory alterations related to dry eye in diabetes mellitus.
Insulin and angiotensin II (AngII) may act through overlapping intracellular pathways to promote cardiac myocyte growth. In this report insulin and AngII signaling, through the phosphatidylinositol 3-kinase (PI 3-kinase) and MAPK pathways, were compared in cardiac tissues of control and obese Zucker rats. AngII induced Janus kinase 2 tyrosine phosphorylation and coimmunoprecipitation with insulin receptor substrate 1 (IRS-1) and IRS-2 as well as an increase in tyrosine phosphorylation of IRS and its association with growth factor receptor-binding protein 2. Simultaneous treatment with both hormones led to marked increases in the associations of IRS-1 and -2 with growth factor receptor-binding protein 2 and in the dual phosphorylation of ERK1/2 compared with the administration of AngII or insulin alone. In contrast, an acute inhibition of both basal and insulin-stimulated PI 3-kinase activity was induced by both hormones. Insulin stimulated the phosphorylation of MAPK equally in lean and obese rats. Conversely, insulin-induced phosphorylation of Akt in heart was decreased in obese rats. Pretreatment with losartan did not change insulin-induced activation of ERK1/2 and attenuated the reduction of Akt phosphorylation in the heart of obese rats. Thus, the imbalance between PI 3-kinase-Akt and MAPK signaling pathways in the heart may play a role in the development of cardiovascular abnormalities observed in insulin-resistant states, such as in obese Zucker rats.
Angiotensin II inhibits insulin-induced activation of phosphatidylinositol 3-kinase through a mechanism, at least in part, dependent on serine phosphorylation of the insulin receptor and insulin receptor substrates (IRS)-1/2. Recent evidence shows that suppressor of cytokine signaling-3 (SOCS-3) is induced by insulin and angiotensin II and participates in the negative control of further stimulation of each of these signaling systems independently. In the present study, we evaluated the interaction of angiotensin II-induced SOCS-3 with the insulin signaling pathway in the heart of living rats. A single iv dose of angiotensin II promotes a significant increase of SOCS-3 in heart, an effect that lasts up to 180 min. Once induced, SOCS-3 interacts with the insulin receptor, JAK-2, IRS-1, and IRS-2. The inhibition of SOCS-3 expression by a phosphorthioate-modified antisense oligonucleotide partially restores angiotensin II-induced inhibition of insulin-induced insulin receptor, IRS-1 and IRS-2 tyrosine phosphorylation, and IRS-1 and IRS-2 association with p85-phosphatidylinositol 3-kinase and [Ser473] phosphorylation of Akt. Moreover, the inhibition of SOCS-3 expression partially reverses angiotensin II-induced inhibition of insulin-stimulated glucose transporter-4 translocation to the cell membrane. These results are reproduced in isolated cardiomyocytes. Thus, SOCS-3 participates, as a late event, in the negative cross-talk between angiotensin II and insulin, producing an inhibitory effect on insulin-induced glucose transporter-4 translocation.
Angiotensin II (Ang II) exerts a potent growth stimulus on the heart and vascular wall. Activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) intracellular signaling pathway by Ang II mediates at least some of the mitogenic responses to this hormone. In other signaling systems that use the JAK/STAT pathway, proteins of the suppressor of cytokine signaling (SOCS) family participate in signal regulation. In the present study it is demonstrated that SOCS3 is constitutively expressed at a low level in rat heart and neonatal rat ventricular myocytes. Ang II at a physiological concentration enhances the expression of SOCS3 mRNA and protein, mainly via AT1 receptors. After induction, SOCS3 associates with JAK2 and impairs further activation of the JAK2/STAT1 pathway. Pretreatment of rats with a specific phosphorthioate antisense oligonucleotide to SOCS3, reverses the desensitization to angiotensin signaling, as detected by a fall in c-Jun expression after repetitive infusions of the hormone. Thus, SOCS3 is induced by Ang II in rat heart and neonatal rat ventricular myocytes and participates in the modulation of the signal generated by this hormone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.