Background
Nocardia species are ubiquitous in natural environments and can cause nocardiosis. In the present study, the use of Resazurin salt and Spectrophotometry were proposed as alternative methods to reduce subjectivity in the interpretation of susceptibility results to antimicrobials by the broth microdilution method for Nocardia spp.
Results
The susceptibility of Nocardia spp. isolates to Amikacin, Ciprofloxacin, Minocycline and Trimethoprim-Sulfamethoxazole was evaluated by Minimum Inhibitory Concentration (MIC) determinations by the broth microdilution method. To verify cellular growth, the colour-changing dye Resazurin was applied, the Optical Densities were measured on a spectrophotometer, and both were compared to Clinical and Laboratory Standards Institute (CLSI) Gold Standard method (visual MIC determination). Percentages of essential and categorical agreements and interpretative categorical errors were calculated within each method (intra-reading) and between them (inter-reading). The Gold Standard visual reading demonstrated 100% of essential and categorical intra-reading agreements for Amikacin, and there was no error when compared with the alternative methods. For Ciprofloxacin, the comparison between the Gold Standard and the Spectrophotometric reading showed 91.5% of essential agreement. In the categorical intra-reading analysis for Minocycline, there were 88.1 and 91.7% in the Gold Standard and in the Spectrophotometric readings, respectively, and 86.4% of concordance between them. High rates of categorical agreement were also observed on the Trimethoprim-Sulfamethoxazole analyses, with 93.7% for the Gold Standard, 84.9% for the Resazurin readings, and 80.5% between them.
Conclusions
The alternative methods with Resazurin and Spectrophotometric readings showed high agreement rates with the Gold Standard.
Candidemia is a significant cause of bloodstream infections (BSI) in nosocomial settings. The identification of species can potentially improve the quality of care and decrease human mortality. Quantitative PCR (qPCR) was evaluated for Candida albicans detection using culture suspensions containing C. albicans, spiked human blood, the cloned qPCR target fragment (ITS2 region) and the results of these assays were compared. The assays showed a good detection limit: C. albicans DNA extracted from yeast (sensitivity 0.2 CFU/µL), spiked human blood (sensitivity 10 CFU/mL), and cloned fragment of ITS2 region (sensitivity 20 target copies/µL). The efficiency of ITS2 fragment-qPCR ranged from 89.67 to 97.07, and the linearity (R 2 ) of the standard curve ranged from 0.992 to 0.999. The results showed that this ITS2-qPCR has a great potential as a molecular prototype model for the development of a test to be applied in clinical practice, greatly reducing the time of candidemia diagnosis, which is extremely important in this clinical setting.
Aspergillosis is an invasive fungal disease associated with high mortality. Antifungal susceptibility testing (AFST) is receiving increasing consideration for managing patients, as well as for surveilling emerging drug resistance, despite having time-consuming and technically complex reference methodologies. The Sensititre YeastOne (SYO) and Etest methods are widely utilized for yeasts but have not been extensively evaluated for Aspergillus isolates. We obtained Posaconazole (POS), Voriconazole (VCZ), Itraconazole (ITC), Amphotericin B (AMB), Caspofungin (CAS), and Anidulafungin (AND) minimum inhibitory concentrations (MICs) for both the Etest (n = 330) and SYO (n = 339) methods for 106 sequenced clinical strains. For 84 A. fumigatus, we analyzed the performance of both commercial methods in comparison with the CLSI-AFST, using available cutoff values. An excellent correlation could be demonstrated for Etest-AMB and Etest-VCZ (p < 0.01). SYO-MICs of AMB, VCZ, and POS resulted in excellent essential agreement (>93%), and >80% for AMB, VCZ, and ITC Etest-MICs. High categoric agreement was found for AMB, ITC, and CAS Etest-MICs (>85%) and AMB SYO-MICs (>90%). The considerable number of major/very major errors found using Etest and SYO, possibly related to the proposed cutoffs and associated with the less time-consuming processes, support the need for the improvement of commercial methods for Aspergillus strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.